

April 25, 2014

Mr. Craig Thomas On-Scene Coordinator U.S. Environmental Protection Agency Region V 77 West Jackson Boulevard Chicago, IL 60604

Subject: Emergency Response (ER) - Buckeye Kankakee Gasoline Spill

Kankakee, Kankakee County, Illinois

Technical Direction Document (TDD) No.: S05-0005-1403-006

Document Control No.: 2306-2A-BLRO Work Order No.: 20405.012.005.2306.00

Dear Mr. Thomas:

Under TDD No. S05-0005-1403-006, the U.S. Environmental Protection Agency tasked the Weston Solutions, Inc. (WESTON®), Superfund Technical Assessment and Response Team (START) to support EPA's ER at the Buckeye Kankakee Gasoline Spill in Kankakee, Kankakee County, Illinois (the Site). The ER was initiated to mitigate the potential for imminent and substantial threats to the public health or welfare of the United States or the environment from a pipeline spill of petroleum products (gasoline and gasoline/diesel mix) in a residential area approximately 0.36 mile south of the Kankakee River.

This letter report discusses the Site description and history, ER activities, and future activities, and provides a summary of the ER. **Attachment A** provides the figures for this letter report. **Attachment B** provides a photographic log of Site conditions and ER activities. **Attachment C** contains copies of the Pollution Reports (POLREP) for the Site. **Attachment D** contains the laboratory analytical reports for samples collected by WESTON START during the ER. **Attachment E** contains the data validation report for the air samples collected by WESTON START during the ER.

SITE DESCRIPTION AND HISTORY

The Site is located on Illinois Highway 113 (IL-113) in the City of Kankakee (the City), between Indian Trail Road and North 1500W Road (**Figures 1** and **2** in **Attachment A**). The Site's geographic coordinates are 41.143600 North latitude and -87.902276 West longitude. The Site is located approximately 0.36 mile south of the Kankakee River (the River).

On March 14, 2014, at approximately 0250 hours, a call was made to the National Response Center indicating a potential pipeline spill in a drainage ditch along IL-113 in Kankakee, Illinois. Buckeye Partners, L.P. (Buckeye), owns the pipeline. The EPA On-Scene Coordinator (OSC) and a WESTON START team member mobilized to the Site to investigate the incident and conduct appropriate response actions.

Mr. Craig Thomas EPA

ER - Buckeye Kankakee Gasoline Spill April 25, 2014

EMERGENCY RESPONSE ACTIVITIES

EPA and WESTON START conducted oversight of ER activities from March 14 through 21, 2014, after which the incident was turned over to the Illinois Environmental Protection Agency (IEPA) for monitoring. During the ER, WESTON START took photographs to document on-site activities. **Attachment B** provides the photographic log of Site conditions and ER activities. **Attachment C** provides copies of the POLREPs, which include detailed daily chronologies of Site activities. **Attachment D** contains the laboratory analytical data reports for all samples collected by WESTON START during the ER.

-2-

On March 14, 2014, at approximately 0800 hours, the EPA OSC and WESTON START personnel initially inspected the suspected source of the pipeline spill. WESTON START observed that two parallel petroleum pipelines cross under IL-113 and are oriented in a north-south direction. WESTON START was informed that one pipeline carried gasoline and the other Transmix (a mix of gasoline and diesel). The southern drainage ditch on IL-113, where the pipelines cross under the road, contained a slight sheen, and photoionization detector (PID) readings for organic vapors collected by WESTON START at the southern drainage ditch were at background levels, with occasional spikes of about 1 part per million (ppm) above background. Upon further investigation, the area north of IL-113 was discovered to be heavily contaminated with petroleum product (**Figure 2** in **Attachment A**). The area impacted by the release included a small agricultural field with a ponded area and a drainage ditch that flows east and then north along Indian Trail Road. The IEPA mobilized to the Site to monitor the situation and to work with the EPA. Buckeye also mobilized contractors and equipment to the Site to conduct ER activities.

Throughout the ER activities, WESTON START used a PID to conduct air monitoring for organic vapors. Breathing zone PID results away from the work activities were at background levels. PID readings near the excavation area during excavation activities mostly ranged from 0 to 10 ppm above background, but occasionally high readings of approximately 60 ppm were recorded. Buckeye's contractor, Conestoga Rovers and Associates (CRA), also conducted extensive air monitoring at the Site and in surrounding residential neighborhoods.

A summary of the ER activities is presented below.

- On March 14, 2014, Buckeye mobilized contractors and equipment to Site. Contractors included Future Environmental, SET Environmental (SET), Antea Group, CRA, and Midwest Contractors.
- On March 14, 2014, Buckeye contractors cleared shrubbery around the area where the pipelines are located and began excavating soil around the pipelines. Initially during excavation, gasoline fumes were noted and excavation was stopped in order to update the health and safety plan and increase the level of protection for workers.

Mr. Craig Thomas **EPA**

ER - Buckeye Kankakee Gasoline Spill April 25, 2014

On March 14, 2014, Buckeye contractors dug an interceptor pit north of IL-113 in an effort to intercept product runoff toward the north.

-3-

- On March 14, 2014, Buckeye contractors deployed boom in the ponded area of the field and in the drainage ditch along Indian Trail Road. Throughout the ER, Buckeye contractors continued to conduct boom deployment and maintenance.
- On March 14, 2014, Buckeye identified residences with wells. Antea Group conducted residential water well sampling throughout the ER and collected samples from approximately 39 residences. Temporary drinking water was supplied to affected residents. WESTON START split six of the residential well samples collected by Antea Group.
- On a daily basis, Buckeye contractors used vacuum trucks to remove petroleum-impacted water from the suspected source area, interceptor trench, ponded area, and ditch near Indian Trail Road.
- On March 15, 2014, Buckeye estimated that the amount of petroleum product released was 1,000 to 1,500 gallons.
- On March 15, 2014, SET used a boat on the Kankakee River to identify areas with sheen and petroleum material. Three reconnaissance trips of the river were made from upstream of the outfall near the release to 1 mile west of outfall. No sheen or other petroleum material was observed along the banks of the river.
- On March 15, 2014, WESTON START collected a product sample for potential fingerprinting analysis. Fingerprinting analysis was determined to not be needed and the product sample was not analyzed.
- Throughout the ER, Buckeye prepared several plans, including sampling plans, an air monitoring plan, and a work plan. WESTON START and EPA reviewed these plans.
- Throughout the ER, Buckeye contractors exposed the pipelines in excavation areas north and south of IL-113 and underneath IL-113 by cutting and removing a portion of the road. Old pipe sleeve was cut and removed. Replacement pipeline sections were delivered and welded together to form two replacement pipelines – one 100 feet long and the other 160 feet long. Both pipes were tapped in preparation for pumping and vacuuming remaining product from pipelines. Personnel from U.S. Coast Guard oversaw pipe tapping activities. Product from the pipes was transferred into tanker trucks and hauled off site. Replacement pipeline sections were x-rayed, and hydrostatic testing was conducted. Buckeye contractors extended the pipeline excavation approximately 60 feet south in order to fit the longer replacement pipelines into the excavation. Antea Group collected material from the removed pipeline casing and four soil samples from around pipe sections under the roadway. The west pipeline was cut; drained; removed from the excavation area; and set on IL-113 west of the excavation area for field inspection before being cleaned, cut, and sent to DNV, a material testing laboratory in Dublin, Ohio, for further inspection and testing. The new pipeline section was placed in the excavation, and

I:\WO\START3\2306\46905LRPT.DOC

2306-2A-BLRO

Mr. Craig Thomas EPA

ER - Buckeye Kankakee Gasoline Spill April 25, 2014

the connecting surfaces were welded. Pressure tests were conducted on the replacement pipelines after installation. No sheen was observed on the outfall to the Kankakee River during the tests.

- Throughout excavation of the soil around the pipelines, Antea Group collected samples from the excavation pit sidewalls. WESTON START provided oversight of soil sampling activities and collected six split soil samples.
- During pipeline removal, field inspection of the removed sections of the pipelines revealed two approximately ³/₄-inch to 1-inch leak sources, one per pipeline. The areas on each pipe were observed to be within a few feet of each other. Buckeye continued to investigate the cause of the release.
- Throughout the ER, Buckeye contractors backfilled around the new sections of installed pipeline and removed petroleum-impacted soil north of IL-113.
- From March 15 through 18, 2014, Antea Group advanced approximately 26 soil borings and collected samples using a hand auger or Geoprobe[®] unit. The soil borings were screened with a PID. Soil samples for laboratory analysis typically were collected from sections with the highest PID readings. The samples were submitted to a laboratory for analysis for volatile organic compounds (VOC), diesel-range organics (DRO), gasoline-range organics (GRO), and polynuclear aromatic hydrocarbons (PAH). WESTON START provided oversight of soil boring activities and split five of the soil samples.
- On March 19, 2014, heavy morning rains brought oil sheen to the soil surface, including free product flowing from an area approximately 30 feet north of the excavation area. Buckeye contractors dug an interceptor pit, which filled with Transmix free product. Buckeye contractors worked to remove the product from the interceptor pit.
- On March 21, 2014, WESTON START deployed three SUMMA canisters for air sampling one upwind and two downwind of the suspected source area. Figure 3 in Attachment A shows the air sampling locations. The samples were collected over approximately 24 hours and submitted for VOC analysis. Attachment E contains the data validation report for the air samples. The Agency for Toxic Substances and Disease Registry (ATSDR) reviewed the air sample results and determined them to be below applicable health standards.
- On March 21, 2014, Antea Group collected additional soil samples from the wooded area between the agricultural field and Indian Trail Road.
- On March 21, 2014, all incident command meetings were suspended as the incident moved beyond the emergency phase. The EPA OSC turned over the incident to the IEPA.
- EPA and WESTON START demobilized from the Site on March 21, 2014.

Buckeye reported the ER recovery and treatment metrics summarized in the table below to the EPA.

Mr. Craig Thomas EPA

ER - Buckeye Kankakee Gasoline Spill April 25, 2014

Volume of contaminated soil removed	1,252 cubic yards (disposed at Laraway Landfill, Joliet, Illinois)		
Amount of oil/water recovered	90,308 gallons (disposed at Beaver Oil)		
Number of workers on site	More than 80		
Initial amount released	1,500 gallons (estimated)		
Final amount collected	Unknown (430 gallons of product; 89,878 gallons of		
	oil/water mix; and 1,252 cubic yards of impacted soil)		

-5-

FUTURE ACTIVITIES

After the response activities from March 14 to 21, 2014, Buckeye continued to provide updates to the EPA OSC on progress metrics and provided laboratory analytical results for environmental samples collected. In addition, Buckeye made preparations to install six shallow groundwater monitoring wells. The IEPA will be working with Buckeye on this effort.

SUMMARY

Under direction of the EPA OSC, WESTON START personnel conducted oversight and monitoring of a dual-pipeline gasoline and Transmix (gasoline and diesel) spill in Kankakee, Illinois. Buckeye, the operator of the pipelines, excavated and replaced the leaking pipeline sections, and its contractors deployed boom, excavated contaminated soil, performed vacuum-truck operations; and conducted air monitoring, soil sampling, and residential well sampling. Throughout the ER, WESTON START conducted daily air monitoring for organic vapors using a PID and reported the results to the EPA OSC. No sheen was observed in the Kankakee River throughout the ER. On March 21, 2014, the planned ER activities were completed and EPA and WESTON START demobilized from the Site.

If you have any questions or comments regarding this report, please contact WESTON START at (312) 424-3300.

Very truly yours,

WESTON SOLUTIONS, INC.

Lisa Graczyk

START Project Manager

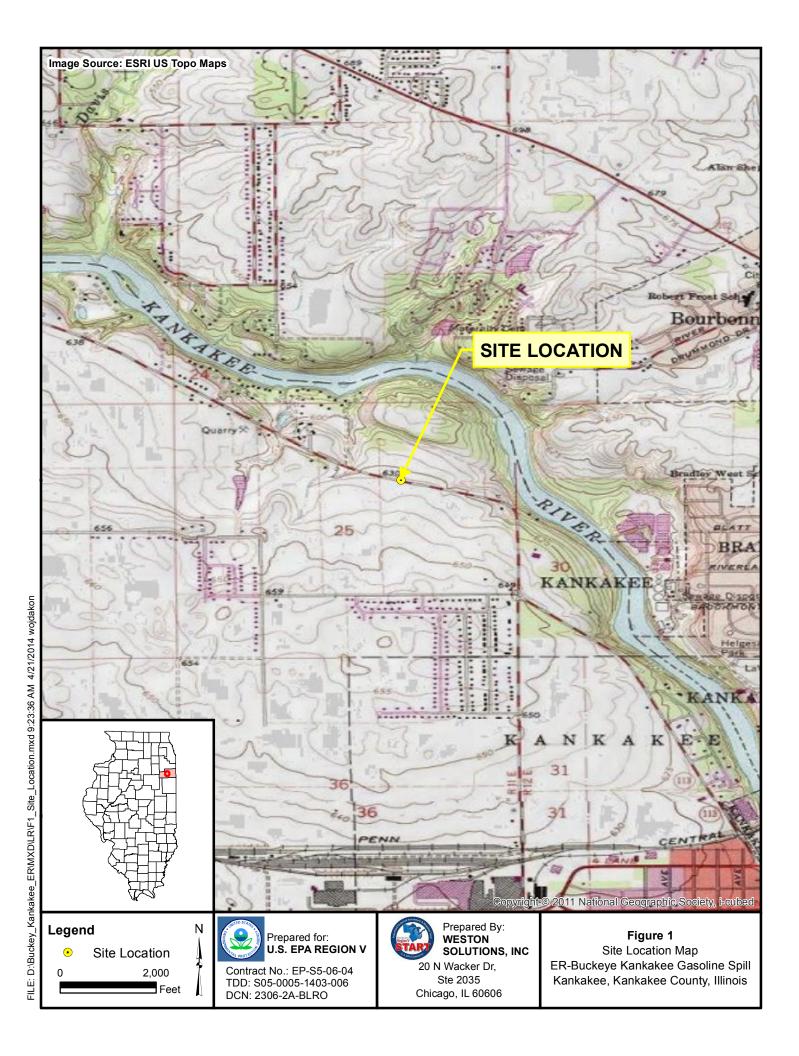
Attachments:

A – Figures

B - Photographic Log

C – POLREPs

D – Laboratory Analytical Reports


E – Data Validation Report for Air Samples

cc: START DCN File

I:\WO\START3\2306\46905LRPT.DOC

2306-2A-BLRO

ATTACHMENT A FIGURES

20 N Wacker Dr,

Ste 2035

Chicago, IL 60606

Contract No.: EP-S5-06-04

TDD: S05-0005-1403-006

DCN: 2306-2A-BLRO

Site Layout Map

ER-Buckeye Kankakee Gasoline Spill

Kankakee, Kankakee County, Illinois

FILE: D:\Buckey_Kankakee_ER\MXD\LR\F2_Site_Layout.mxd 9:24:17 AM 4/21/2014 wojdakon

Approximate

Location of Spill

350

Feet

FILE: D:\Buckey_Kankakee_ER\MXD\LR\F3_Sampling_Locations.mxd 9:32:10 AM 4/21/2014 wojdakon

ATTACHMENT B PHOTOGRAPHIC LOG

Photograph No.: 1 Date: 3/14/14

Direction: Southeast **Photographer:** Brennan Johnson **Subject:** Ponded area in agricultural field directly north of IL-113 containing free product runoff

Site: ER - Buckeye Kankakee Gasoline Spill

Photograph No.: 2 Date: 3/15/14

Direction: East **Photographer:** Brennan Johnson

Subject: Pipelines exposed on the south side of IL-113

Photograph No.: 3 Date: 3/15/14

Direction: Down **Photographer:** Brennan Johnson

Subject: WESTON START collecting product sample

Site: ER - Buckeye Kankakee Gasoline Spill

Photograph No.: 4 Date: 3/16/14

Direction: East **Photographer:** Brennan Johnson

Photograph No.: 5 Date: 3/16/14

Direction: Southeast **Photographer:** Brennan Johnson

Subject: Contractors excavating IL-113 to uncover pipelines underneath the road

Photograph No.: 6 **Direction:** South

Subject: Pipelines exposed beneath IL-113

Date: 3/17/14

Photographer: Brennan Johnson

Photograph No.: 7 Date: 3/17/14

Direction: West Photographer: Brennan Johnson

Subject: Western pipeline being tapped in preparation for draining

Photograph No.: 8 Date: 3/18/14

Direction: North **Photographer:** Brennan Johnson **Subject:** Agricultural field north of IL-113 where product runoff occurred after removal of top 6

inches of soil

Site: ER - Buckeye Kankakee Gasoline Spill

Photograph No.: 9 Date: 3/19/14

Direction: Northwest **Photographer:** Brennan Johnson **Subject:** Product coming up in the 6-inch-deep excavation in the field north of IL-113 after

heavy rains the prior evening

Photograph No.: 10 Date: 3/19/14

Direction: West **Photographer:** Brennan Johnson

Subject: Crews removing old section of western pipeline

Site: ER - Buckeye Kankakee Gasoline Spill

Photograph No.: 11
Direction: South

Subject: Crews positioning new pipeline

Date: 3/19/14

Photographer: Brennan Johnson

Photograph No.: 12 Date: 3/20/14

Direction: West **Photographer:** Brennan Johnson **Subject:** Both sections of old pipeline laid out for inspection prior to cutting, removal, and

shipment for testing

Site: ER - Buckeye Kankakee Gasoline Spill

Photograph No.: 13 Date: 3/21/14

Direction: South **Photographer:** Brennan Johnson

Subject: New pipeline sections being backfilled for reconstruction of IL-113

ATTACHMENT C POLREPs

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep Initial Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #1

Initial

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Paul Atkociunas, OSC

Date: 3/14/2014 **Reporting Period:** March 14, 2014

1. Introduction

1.1 Background

Site Number: Contract Number: D.O. Number: Action Memo Date:

Response Authority: OPA Response Type: Emergency
Response Lead: PRP Incident Category: Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 **Start Date:** 3/14/2014

Demob Date: Completion Date:

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline) on drainage ditch near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered is located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a potential threat to soil and groundwater from a gasoline release. Residents located east of the site are on private wells. In addition, the drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. The release was estimated at 500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

The following response actions occurred on 3/14/14:

- Buckeye Pipeline mobilized contractors and equipment to site. Contractors include Future Environmental; SET Environmental; CRA; and Midwest Contractors. Heavy equipment mobilized included two excavators and several tanker trucks
- Buckeye cleared shrubbery around the area where the pipelines are located and began
 excavation. During excavation, gasoline fumes were noted and excavation was stopped in order
 to update the health and safety plan and increase level of protection for workers
- Buckeye's contractor, CRA, performed air monitoring during excavation, in areas of the spill and the residential area.
- The area north of the pipeline spill across IL-113 was discovered to be heavily contaminated with petroleum product. The area impacted with oil includes a small agricultural field and a drainage ditch which flows east and then north.
- The police department and Buckeye contractors visited residences to update them on situation and to see if they were having any issues with water
- IEPA was on site to monitor situation and work with U.S. EPA
- U.S. EPA's contractor, Weston, performed air monitoring with a PID and documented site
 activities. Initial readings along the ditch were background to 1 ppm VOCs. Highest reading
 received were around 65 ppm both in the work zone when the contractors began
 excavating around the pipeline and when the PID was put near the product discovered in the
 field.
- Buckeye has identified homes with wells and provided sampling, temporary drinking water to affected residents.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

Ensure the health and safety of responders and the public Delineate extent of contamination

Monitor the Kankakee River for possible impacts

Excavate impacted soils

Collect impacted water, gasoline and product

Conduct monitoring and sampling, as necessary

Conduct oversight of Buckeye Operations

Document response activities.

2.2.1.2 Next Steps

2.2.2 Issues

Documentation of off-site release of gasoline / product to the North of the Pipeline release point.

2.3 Logistics Section

START is providing monitoring, documentation, and oversight support. Buckeye Pipeline has mobilized vac trucks, excavation equipment, monitoring, and sampling equipment. A Command Post at a local hotel has been established.

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$50,000.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START are providing health and safety oversight.

2.5.2 Liaison Officer

2.5.3 Information Officer

3. Participating Entities

3.1 Unified Command

3.2 Cooperating Agencies

Illinois EPA Limestone Fire Department Kankakee County EMA Kankakee Police Department United States Coast Guard

4. Personnel On Site

EPA 1
START 2
Buckeye / Contractors 40

5. Definition of Terms

No information available at this time.

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

No information available at this time.

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #2

Progress

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Andrew Maguire, OSC

Date: 3/15/2014 **Reporting Period:** 3/15/2014

1. Introduction

1.1 Background

Site Number: Contract Number:

D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 Start Date: 3/14/2014

Demob Date: Completion Date:

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline) in drainage ditch near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a potential threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identifed yet, however they are believed to be within the casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

The following response actions occurred during night operations from 3/14/14 (1500) to 3/15/14 (0700):

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA; and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation and T&D operations. CRA conducted air monitoring and sampling activities. Antea Group conducted environmental surface water and residential drinking water sampling. SET Environmental conducted boom deployment and maintenance.
- Buckeye contractors began removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Buckeye contractors diverted the water around the excavation area.
- Buckeye contractors excavated impacted soil to expose the two pipelines.
- Buckeye contractors collected upstream and downstream water samples from the ditch near the suspected source area. In addition, drinking water samples were collected from residential homes.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in areas of the spill and
 the residential area. Three AreaRAE units were stationed downwind from the source area and
 one AreaRAE unit was stationed upwind from the suspected source area. In addition, MultiRAEs
 and Benzene UltraRAEs are used near the suspected source and residential area. Five passive
 air sampling units were installed downwind from the Site for VOC analysis.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene
 UltraRAE, Draeger CMS benzene chip reader and documented site activities. VOC readings
 range from 0-30 ppm in the suspected source area and non-detects in the residential area.
 Benzene and H2S readings were non-detects in the residential and source area. Carbon
 Monoxide ranged from 0-20 ppm in the source area which may have been due to the generators

and trucks on idle. Carbon Monoxide was non-detect in the residential area.

The following response actions occurred during the day time operations on 3/15/14 from 0700 to 1900:

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA; and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation and T&D operations. CRA conducted air monitoring and sampling activities. Antea Group conducted environmental surface water and residential drinking water sampling. SET Environmental continued to conduct boom deployment and maintenance, in addition to deploying 2 trailers of sorbent mats in Zone 2.
- Buckeye increased its release estimate from 500 gallons to 1,000-1,500 gallons.
- Antea Group conducted soil boring samples using hand auger and/or geoprobe. The soil borings
 were then screened with a PID. The section with the highest PID reading had a soil sample
 collected from there. The samples will be submitted to a lab and analyzed for VOCs, DRO, GRO
 and PAHs.
- SET conducted boat operations, making 3 tours of the river from upstream of area outfall to 1-mile west of outfall. No sheen observed or other petroleum material were detected along banks.
- Buckeye contractors continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Buckeye contractors installed a trench box over exposed pipes in excavation north of IL-113, and excavated to expose the pipelines on the southern side of IL-113.
- Buckeye contractors continued collecting drinking water samples from 39 residential homes.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. Three AreaRAE units were stationed downwind from the excavation area and
 one AreaRAE unit was stationed upwind from the excavation area. In addition, MultiRAEs and
 Benzene UltraRAEs are used near the excavation and residential area.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene
 UltraRAE, and documented site activities. VOC readings range from 0-20ppm in the excavation
 area and non-detects in the residential area. Benzene readings were 0-0.3ppm in the excavation
 area and non-detects in the residential area. Carbon Monoxide ranged from 0-20 ppm in the
 excavation area which may have been due to the generators and trucks on idle. Carbon
 Monoxide was non-detect in the residential area.
- Weston collected a product sample to be sent to USCG Marine Safety Lab for fingerprinting analysis.
- Weston provided oversight of Antea Group's soil boring activities and collected 2 split soil samples in tandem with Antea's sampling activities.

The following response actions occurred during night operations from 3/15/14 (1700) to 3/16/14 (0700):

- Buckeye Pipeline contractors onsite included Future Environmental; CRA; and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation, pipe cutting and T&D operations. CRA conducted air monitoring and sampling activities.
- Buckeye contractors continued removing impacted water from the excavation area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Buckeye contractors exposed pipes in excavation north and south of IL-113. Visual product was on west pipe north of IL-113. Old pipe sleeve was cut and removed. Leak sources have not yet been identified on either pipe.

- Buckeye's contractor, CRA, performed air monitoring during excavation, in areas of the spill and the residential area. Due to wind shift, AreaRAE units were moved. Three AreaRAE units were stationed downwind from the excavation area and one AreaRAE unit was stationed upwind from the excavation area. In addition, MultiRAEs and Benzene UltraRAEs are used near the source and residential area.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene
 UltraRAE, and documented site activities. VOC readings range from 0-2 ppm in the excavation
 area and non-detects in the residential area. Benzene readings were non-detects in the
 excavation and residential area. Carbon Monoxide was non-detect in the excavation and
 residential area.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

TBD

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
soil		8 truck loads			staged at Buckeye terminal
water		6 vac trucks			staged in frac tanks at Buckeye terminal
skimmed product		1 skimmer			staged in frac tanks at Buckeye terminal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

Ensure the health and safety of responders and the public Identify locations of pipeline anomalies and/or breaks
Delineate extent of contamination via groundwater, soil, and residential well sampling Monitor the Kankakee River for possible impacts
Excavate impacted soils
Collect impacted water, soil, and petroleum
Conduct monitoring and sampling, as necessary
Conduct oversight of Buckeye Operations
Document response activities.

2.2.1.2 Next Steps

Kankakee County Health will produce a press release/statement indicating drinking water areas of concern and identify areas that are safe for drinking and use.

2.2.2 Issues

Documentation of off-site release of gasoline / product to the North of the Pipeline release point.

2.3 Logistics Section

START is providing monitoring, documentation, and oversight support. Buckeye Pipeline has mobilized vac trucks, excavation equipment, monitoring, and sampling equipment. A Command Post at a local hotel has been established.

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$50,000. OSC is monitoring EPA and START costs.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START are providing health and safety oversight.

2.5.2 Liaison Officer

2.5.3 Information Officer

Francisco Arcuate

3. Participating Entities

3.1 Unified Command

USEPA, Buckeye Pipeline, Kankakee County EMA, Illinois EPA

3.2 Cooperating Agencies

Limestone Fire Department Kankakee County Health Department Kankakee Police Department United States Coast Guard ATSDR

4. Personnel On Site

EPA 2

START 4 Buckeye / Contractors 40

5. Definition of Terms

No information available at this time.

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

No information available at this time.

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #3

Progress

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Andrew Maguire, OSC

Date: 3/17/2014

Reporting Period: 3/16/2014 to 3/17/2014

1. Introduction

1.1 Background

Site Number: Contract Number:

D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 Start Date: 3/14/2014

Demob Date: Completion Date:

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline and gasoline/diesel transmix) in drainage ditch and pasture near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identifed yet, however they are believed to be within the casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

The following response actions occurred during the day time operations on 3/16/14 from 0700 to 1900:

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA;
 Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations.
 Midwest Construction conducted excavation and T&D operations. CRA conducted air monitoring
 and sampling activities. Antea Group conducted environmental surface water and residential
 drinking water sampling.
- Buckeye contractors continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Buckeye contractors began cutting and removing a portion of IL 113 and began excavating in the road to expose the pipes.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. Four additional AreaRAEs arrived today. A total of eight AreaRAEs were
 operating. In addition, MultiRAEs and Benzene UltraRAEs are used near the excavation and
 residential area.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene UltraRAE, and documented site activities. VOC readings range from 0-3.5 ppm in the excavation area and non-detects in the residential area. Benzene readings were non-detect in the excavation and residential. Carbon Monoxide ranged from 0-5 ppm in the excavation area which may have been due to the generators and trucks on idle. Carbon Monoxide was non-detect in the residential area.
- Antea Group conducted six soil boring samples using hand auger and/or geoprobe. The soil
 borings were then screened with a PID. The section with the highest PID reading had a soil
 sample collected from there. The samples will be submitted to a lab and analyzed for VOCs,

PAHs, and TPH as DRO and GRO. Weston provided oversight of Antea Group's soil boring activities and collected 3 split soil samples.

- Antea Group collected drinking water samples from residential homes. A total of 35 homes have been sampled. Samples will be submitted to a lab and analyzed for VOCs and PAHs. START collected 4 split samples.
- Weston reviewed Buckeye pipeline contractor's sampling plans, air monitoring plan and work plan.

The following response actions occurred during night operations from 3/16/14 (1700) to 3/17/14 (0700):

- Buckeye Pipeline contractors onsite included Future Environmental; CRA; Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation, pipe cutting and T&D operations. CRA conducted air monitoring and sampling activities.
- Buckeye contractors continued removing impacted water from the excavation area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Thirteen soil trucks were hauled off Site.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in areas of the spill and the residential area. Eight AreaRAE units are stationed surrounding the Site. In addition, MultiRAEs and Benzene UltraRAEs are used near the source and residential area. VOC readings ranged from 0-4.6 ppm PID. Benzene readings were non-detect.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene
 UltraRAE, and documented site activities. VOC readings range from 0-2 ppm in the excavation
 area and non-detects in the residential area. Benzene readings were non-detects in the
 excavation and residential area. Carbon Monoxide was non-detect in the excavation and
 residential area.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste is being staged at Buckeye terminal. The soil will go to Laraway Landfill in Joliet, IL, product waste will go to Beaver oil and water/boom/PPE will go to Aaron oil in Alabama.

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
soil		515 yd3			staged at Buckeye terminal
water		17,654gal			staged in frac tanks at Buckeye terminal
skimmed product		266 gal			staged in frac tanks at Buckeye terminal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

Ensure the health and safety of responders and the public

Expose pipeline underneath highway, cut out suspect pipeline length (approx 100 ft/pipeline)

Construct, hydrostatic test, istall, weld and test new length of pipeline

Inspect suspect pipeline length at nearby Kankakee Terminal.

Delineate extent of contamination via groundwater, soil, and residential well sampling

Monitor the Kankakee River for possible impacts

Excavate impacted soils

Collect impacted water, soil, and petroleum

Conduct monitoring and sampling, as necessary

Conduct oversight of Buckeye Operations

Document response activities.

2.2.1.2 Next Steps

Buckeye Partners and Kankakee County Health has released a press release/statement indicating drinking water areas of concern and identify areas that are safe for drinking and use. It can be viewed at www.kankakeeroute113release.com.

2.2.2 Issues

Documentation of off-site release of gasoline / product to the North of the Pipeline release point.

2.3 Logistics Section

START is providing monitoring, documentation, and oversight support. Buckeye Pipeline has mobilized vac trucks, excavation equipment, monitoring, and sampling equipment. The Incident Command Post is at the Hilton Garden Inn in Kankakee (455 Riverstone Parkway, Kankakee, IL 60901).

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$50,000. OSC is monitoring EPA and START costs.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START are providing health and safety oversight. US Coast Guard will provide additional Safety oversight as of 1200 3/17/14.

2.5.2 Liaison Officer

2.5.3 Information Officer

Francisco Arcuate

3. Participating Entities

3.1 Unified Command

USEPA, Buckeye Pipeline, Kankakee County EMA, Illinois EPA

3.2 Cooperating Agencies

Limestone Fire Department Kankakee County Health Department Kankakee Police Department United States Coast Guard ATSDR

4. Personnel On Site

EPA 2

START 5

USCG - 2

Buckeye / Contractors 80

5. Definition of Terms

No information available at this time.

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

www.kankakeeroute113release.com - PRP Website

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

No information available at this time.

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #4

progress

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Ramon Mendoza, OSC

Date: 3/19/2014 Reporting Period: progress

1. Introduction

1.1 Background

Site Number: Contract Number:

D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 Start Date: 3/14/2014

Demob Date: Completion Date:

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline and gasoline/diesel transmix) in drainage ditch and pasture near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identifed yet, however they are believed to be within the casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

The following response actions occurred during the day time operations on 3/17/14 from 0700 to 1900:

Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA; Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation and T&D operations. CRA conducted air monitoring and sampling activities. Antea Group conducted soil and residential drinking water sampling.

- Buckeye contractors continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Replacement pipeline sections were delivered. They were welded together to form the 2 replacement pipelines - 1-100 foot long, and 1-160 foot long pipeline.
- Buckeye contractors finished excavating soil from portion of pipes that run under IL-113. Both
 pipes were tapped in preparation for pumping and vacuuming remaining product from pipelines.
 Pipe tapping was overseen by personnel from USCG.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. A total of eight AreaRAEs were operating. In addition, MultiRAEs and Benzene
 UltraRAEs are used near the excavation and residential area. START monitored their live
 AreaRAE data periodically throughout day.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene UltraRAE, and documented site activities. VOC readings range from 0-10 ppm in the excavation area and non-detects in the residential area. Benzene readings were non-detect in the excavation and residential. Carbon Monoxide was non-detect in the residential and excavation area.
- Antea Group performed PID screening and sheen test on soil waste disposal pile currently staged south of Zone 1. Weston provided oversight of soil screening and performed sheen tests on the 2 soil samples with the highest and lowest readings.
- Antea Group conducted five soil boring samples using hand auger. The soil borings were then
 screened with a PID. The section with the highest PID reading had a soil sample collected from
 there. This brings total soil boring locations up to 18. They also collected 6 samples from

excavation pit sidewalls beneath roadway, 3 on east side, 3 on west at 20 foot intervals. The highest PID reading was 2,326 ppm, the lowest was 6.0 ppm. START split 2 of these 6 samples. Samples will be submitted to a lab and analyzed for VOCs, PAHs, and TPH as DRO and GRO. Weston provided oversight of Antea Group's soil sampling activities.

• Antea Group continued collecting drinking water samples from residential homes.

The following response actions occurred during night operations from 3/17/14 (1700) to 3/18/14 (0700):

- Buckeye Pipeline contractors onsite included Future Environmental; CRA; Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation, pipe cutting and T&D operations. CRA conducted air monitoring and sampling activities.
- Buckeye contractors continued removing impacted water from the excavation area, ponded area, and at the ditch near 1726 Indian trail road. Twelve soil trucks were hauled off Site.
- Buckeye contractors tapped the pipe using pneumatic drill. Product from the pipes were transferred into tanker trucks and hauled off site.
- Buckeye contractors excavated the top 6 inches of soil from the eastern portion of the field in Zone 2, along the mat road. Excavation extends approximately 200 linear feet north of IL-113.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in areas of the spill and the residential area. Eight AreaRAE units are stationed surrounding the Site. In addition, MultiRAEs and Benzene UltraRAEs are used near the source and residential area. VOC readings ranged from 0-5 ppm PID. Benzene readings were non-detect.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene
 UltraRAE, and documented site activities. VOC readings range from 0-56 ppm in the excavation
 area and 0-0.4 ppm in the residential area. Benzene readings were 0-0.45 in the excavation and
 non-detect in the residential area. Carbon Monoxide was non-detect in the excavation and
 residential area.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste is being staged at Buckeye terminal. The soil will go to Laraway Landfill in Joliet, IL, product waste will go to Beaver oil and water/boom/PPE will go to Aaron oil in Alabama.

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
soil		830 yd3			staged at Buckeye terminal
water		31,100 gal			staged in frac tanks at Buckeye terminal
skimmed product		266 gal			staged in frac tanks at Buckeye terminal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

Ensure the health and safety of responders and the public

Expose pipeline underneath highway, cut out suspect pipeline length (approx 100 ft/pipeline)

Construct, hydrostatic test, istall, weld and test new length of pipeline

Inspect suspect pipeline length at nearby Kankakee Terminal.

Delineate extent of contamination via groundwater, soil, and residential well sampling

Monitor the Kankakee River for possible impacts

Excavate impacted soils

Collect impacted water, soil, and petroleum

Conduct monitoring and sampling, as necessary

Conduct oversight of Buckeye Operations

Document response activities.

2.2.1.2 Next Steps

Buckeye Partners and Kankakee County Health has released a press release/statement indicating drinking water areas of concern and identify areas that are safe for drinking and use. It can be viewed at www.kankakeeroute113release.com.

2.2.2 Issues

Documentation of off-site release of gasoline / product to the North of the Pipeline release point.

2.3 Logistics Section

START is providing monitoring, documentation, and oversight support. Buckeye Pipeline has mobilized vac trucks, excavation equipment, monitoring, and sampling equipment. The Incident Command Post is at the Hilton Garden Inn in Kankakee (455 Riverstone Parkway, Kankakee, IL 60901).

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$80,000. OSC is monitoring EPA and START costs.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START are providing health and safety oversight. US Coast Guard will provide additional Safety oversight as of 1200 3/17/14.

2.5.2 Liaison Officer

2.5.3 Information Officer

Francisco Arcuate

3. Participating Entities

3.1 Unified Command

USEPA, Buckeye Pipeline, Kankakee County EMA, Illinois EPA

3.2 Cooperating Agencies

Limestone Fire Department
Kankakee County Health Department
Kankakee Police Department
United States Coast Guard
ATSDR

4. Personnel On Site

EPA 2

START 5

USCG - 2

Buckeye / Contractors 80

5. Definition of Terms

No information available at this time.

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

www.kankakeeroute113release.com - PRP Website

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #5

Progress

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Ramon Mendoza, OSC

Date: 3/18/2014

Reporting Period: 3/18/2014 to 3/19/2014

1. Introduction

1.1 Background

Site Number: Z5MX Contract Number: D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 Start Date: 3/14/2014

Demob Date: Completion Date:

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline and gasoline/diesel transmix) in drainage ditch and pasture near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identifed yet, however they are believed to be within the casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

Response actions previous to 3/18/14 0700 are documented in previous Polreps 1 thru 4.

The following response actions occurred during the day time operations on 3/18/14 from 0700 to 1900:

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA;
 Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations.
 Midwest Construction conducted excavation and T&D operations. CRA conducted air monitoring
 and sampling activities. Antea Group conducted soil and residential drinking water sampling.
- Buckeye contractors continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Replacement pipeline sections were X-rayed and received hydrostatic testing.
- Buckeye contractors worked to extend pipeline excavation toward the south approximately 60 feet in order to fit the longer replacement pipelines into the excavation.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. A total of eight AreaRAEs were operating. In addition, MultiRAEs and Benzene
 UltraRAEs are used near the excavation and residential area. START monitored their live
 AreaRAE data periodically throughout day.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene UltraRAE, and documented site activities. VOC readings range from 0-5 ppm in the excavation area and non-detects in the residential area. Benzene readings were non-detect in the excavation and residential. Carbon Monoxide was non-detect in the residential and excavation area.
- Antea Group collected some material from pipeline casing and 4 soil samples of soil from around pipe sections under roadway for investigation.
- Antea Group conducted six soil borings using hand auger. The soil borings were then screened
 with a PID. The section with the highest PID reading had a soil sample collected from there. This
 brings total soil boring locations up to 26. Samples will be submitted to a lab and analyzed for
 VOCs, PAHs, and TPH as DRO and GRO. Weston provided oversight of Antea Group's soil

- sampling activities.
- Antea Group continued collecting drinking water samples from residential homes.
- EPA OSC participated in the following meetings: Unified Command, Command & General Staff, Tactics, and Planning Meetings and provided input in Objectives, Planning, and Tactics as necessary.
- EPA OSC reviewed and approved Incident Action Plan for the next operating period.
- EPA OSC coordinating with Illinois EPA OSC and Kankakee Health Department.
- EPA OSC Met with USCG Safety Personnel and both parties agreed that adequate safety personnel have been provided by Buckeye and that the safety mission of the USCG has been fullfilled. USCG demobed from the Site at about 1530 hours.

The following response actions occurred during night operations from 3/18/14 1700 to 3/19/14 0700:

- Buckeye Pipeline contractors onsite included Future Environmental; CRA; Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations. Midwest Construction conducted excavation, pipe cutting and T&D operations. CRA conducted air monitoring and sampling activities.
- Buckeye contractors continued removing impacted water from the excavation area, ponded area, and at the ditch near 1726 Indian trail road. Two soil trucks were hauled off Site.
- Buckeye contractors continued to extend excavation towards the south end of the pit to make room for new pipe.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in areas of the spill and the residential area. Eight AreaRAE units are stationed surrounding the Site. In addition, MultiRAEs and Benzene UltraRAEs are used near the source and residential area.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene
 UltraRAE, and documented site activities. VOC readings range from 0-8 ppm in the excavation
 area and 0-0.25 ppm in the residential area. They also found and reported (to OSC) free product
 coming out of the surface soil north of the pipeline excavation in Zone 2.

The following response actions occurred during the day time operations on 3/19/14 from 0700 to 1900:

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA;
 Antea Group and Midwest Contractors. Future Environmental conducted vacuum truck operations.
 Midwest Construction conducted excavation and T&D operations. CRA conducted air monitoring
 and sampling activities. Antea Group conducted soil and residential drinking water sampling.
- Buckeye contractors continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Heavy morning rains brought a of oil sheen to soil surface, including free product flowing from area 30 feet north of excavation north wall. Product is surfacing and flowing in 0-6" scrape that was conducted the evening of 3/17. At the federal OSC direction, Buckeye crews dug interceptor pit, which filled will transmix free product. This product is being recovered from this pit.
- Buckeye contractors continued to extend pipeline excavation toward the south approximately 60 feet in order to fit the longer replacement pipelines into the excavation.
- Gold pipe (West pipe) was cut, drained, and removed from excavation site. It was set on IL-113
 West of excavation site for field inspection tomorrow before being cleaned, cut, and sent to DNV's
 lab in Dublin, OH.
- New pipeline was placed in pit and connecting surfaces prepped for welding.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. A total of eight AreaRAEs were operating. In addition, MultiRAEs and Benzene
 UltraRAEs are used near the excavation and residential area. START monitored their live
 AreaRAE data periodically throughout day.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID, Benzene UltraRAE, and documented site activities. VOC readings range from 0-5 ppm in the excavation area and non-detects in the residential area. Benzene readings were non-detect in the excavation and residential.
- Antea Group collected soil samples from sidewall of excavation. Samples will be submitted to a lab and analyzed for VOCs, PAHs, and TPH as DRO and GRO. EPA contractor Weston provided oversight of Antea Group's soil sampling activities and split 5 samples

- Antea Group continued collecting drinking water samples from residential homes.
- EPA OSC participated in the following meetings: Unified Command, Command & General Staff, Tactics, and Planning Meetings and provided input in Objectives, Planning, and Tactics as necessary.
- EPA OSC reviewed and approved the Incident Action Plan for the next operating period.
- EPA OSC coordinating with Illinois EPA OSC and Kankakee Health Department.
- OSC Thomas arrived at about 1500 hours and met with OSC Mendoza to transition Federal OSC duties. OSC Thomas will take over the federal OSC lead onsite on 3/20/14.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste is being staged at Buckeye terminal. The contaminated soil is going to Waste Management Laraway Landfill in Joliet, IL, Contaminated water and free product waste is being shipped to Beaver oil and water/boom/PPE will go to Aaron oil in Alabama.

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
contaminated soil		1049 yd3			staged at Buckeye terminal
contaminated water		52,126 gal			staged in frac tanks at Buckeye terminal
skimmed free product		430 gal			staged in frac tanks at Buckeye terminal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

Ensure the health and safety of responders and the public

Expose pipeline underneath highway, cut out suspect pipeline length (approx 100 ft/pipeline)

Construct, hydrostatic test, install, weld and test new length of pipeline

Inspect suspect pipeline length at nearby Kankakee Terminal.

Delineate extent of contamination via groundwater, soil, and residential well sampling

Monitor the Kankakee River for possible impacts

Excavate impacted soils

Collect impacted water, soil, and petroleum

Conduct monitoring and sampling, as necessary

Conduct oversight of Buckeye Operations

Document response activities.

At the request of Kankakee Health Department USEPA Will conduct a 24 hour air sampling upwind and downwind of the Site using Summa Canisters to confirm the non-detects in the Community. Sampling will be conducted for VOCs.

2.2.1.2 Next Steps

Buckeye Partners and Kankakee County Health has released a press release/statement indicating drinking water areas of concern and identify areas that are safe for drinking and use. It can be viewed at www.kankakeeroute113release.com.

2.2.2 Issues

The site is contained and no release of oil to surface water (Kankakee River) has occured.

2.3 Logistics Section

START is providing monitoring, documentation, and oversight support 24 hours/day. Buckeye Pipeline has mobilized vac trucks, excavation equipment, monitoring, and sampling equipment. The Incident Command Post is at the Hilton Garden Inn in Kankakee (455 Riverstone Parkway, Kankakee, IL 60901).

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$120,000. OSC is monitoring EPA and START costs.

EPA contractor WESTON has approved budget ceiling of \$73,000, with \$50,000 expended at this time.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START are providing health and safety oversight.

2.5.2 Liaison Officer

2.5.3 Information Officer

Francisco Arcuate

3. Participating Entities

3.1 Unified Command

USEPA Region 5, Buckeye Pipeline, Kankakee County EMA, Illinois EPA

3.2 Cooperating Agencies

Limestone Fire Department Kankakee County Health Department Kankakee Police Department United States Coast Guard ATSDR

4. Personnel On Site

EPA 1 (second OSC arrived 3/19 at 1500 hrs)

START 3 (down to 2 as of 0900 on 3/19)

USCG - 1 (Demobed 3/18 at 1530 hrs) Buckeye / Contractors 80

5. Definition of Terms

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

www.kankakeeroute113release.com - PRP Website

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #6

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Craig Thomas, OSC

Date: 3/20/2014

Reporting Period: 3/19/2014-3/20/14

1. Introduction

1.1 Background

Site Number: Z5MX Contract Number: D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 Start Date: 3/14/2014

Demob Date: Completion Date:

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline and gasoline/diesel transmix) in drainage ditch and pasture near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identifed yet, however they are pressure testing of replace lines confirm that they were withing casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

Response actions previous to 3/19/14 1900 are documented in previous Polreps 1 thru 5.

The following response actions occurred during operations from 3/19/14 1900 to 3/20/14 1900:

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA; Antea Group and Midwest Contractors.
- Future Environmental continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. A total of eight AreaRAEs were operating. In addition, MultiRAEs and Benzene
 UltraRAEs are used near the excavation and residential area. START monitored their live
 AreaRAE data periodically throughout day.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID. VOC readings range from 0-3 ppm in the excavation area and non-detects in the residential area. START deployed 3 Summa Canisters, 1 upwind and 2 downwind of the suspected source area. The samples will be run 24-hours and submitted for TO-15 analaysis.
- SET and vac trucks staged at Zone 3 in the event of a release during pressure test. START documented staging; no sheen was observed.
- Gold and blue replacement pipelines passed pressure test.
- Field inspection of gold and blue pipelines revealed 2 approximately 3/4" to 1" areas (1 per pipeline) of high arc potential; the areas on each pipe were observed to be within a few feet of each other. Buckeye will continue investigation into the cause of the release.
- Antea Group collected sidewall samples from excavation pit after pressure tests.
- Antea Group continued collecting drinking water samples from residential homes.START split 2 samples which will be submitted for VOC and PNA analysis.
- EPA OSC participated in the following meetings: Unified Command, Command & General Staff, and Planning Meetings and provided input in Objectives, Planning, and Tactics as necessary.

- EPA OSC reviewed and approved Incident Action Plan for the next operating period.
- EPA OSC coordinating with Illinois EPA OSC and Kankakee Health Department.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste is being staged at Buckeye terminal. The contaminated soil is going to Waste Management Laraway Landfill in Joliet, IL, Contaminated water and free product waste is being shipped to Beaver oil and water/boom/PPE will go to Aaron oil in Alabama.

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
contaminated soil		1049 yd3			staged at Buckeye terminal
contaminated water		55,160 gal			staged in frac tanks at Buckeye terminal
skimmed free product		430 gal			staged in frac tanks at Buckeye terminal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

Ensure the health and safety of responders and the public

Transition site to Illinois EPA for further delineation of the extent of contamination via groundwater, soil, and additional residential well sampling

Monitor the Kankakee River for possible impacts

Collect impacted water, soil, and petroleum, as necessary

Conduct monitoring and sampling, as necessary

Conduct oversight of Buckeye Operations

Document response activities

At the request of Kankakee Health Department USEPA will complete collection of 24-hour air samples upwind and downwind of the Site using Summa Canisters to confirm the non-detects in the Community. Sampling will be conducted for VOCs

2.2.1.2 Next Steps

Buckeye Partners and Kankakee County Health have released a press release/statement indicating drinking water areas of concern and identify areas that are safe for drinking and use. It can be viewed at www.kankakeeroute113release.com.

2.2.2 Issues

The site is contained and no release of oil to surface water (Kankakee River) has occurred.

2.3 Logistics Section

START is providing monitoring, documentation, and oversight support 24 hours/day, as needed. Buckeye Pipeline has mobilized vac trucks, excavation equipment, monitoring, and sampling

equipment. The Incident Command Post is at the Hilton Garden Inn in Kankakee (455 Riverstone Parkway, Kankakee, IL 60901).

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$120,000. OSC is monitoring EPA and START costs.

EPA contractor WESTON has approved budget ceiling of \$73,000, with \$60,000 expended at this time.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START are providing health and safety oversight.

2.5.2 Liaison Officer

2.5.3 Information Officer

Francisco Arcuate

3. Participating Entities

3.1 Unified Command

USEPA Region 5, Buckeye Pipeline, Kankakee County EMA, Illinois EPA

3.2 Cooperating Agencies

Limestone Fire Department Kankakee County Health Department Kankakee Police Department United States Coast Guard ATSDR

4. Personnel On Site

EPA 1

START 4 (2 night shift/2 day shift)

Buckeye / Contractors 80

5. Definition of Terms

No information available at this time.

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

www.kankakeeroute113release.com - PRP Website

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #7

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Craig Thomas, OSC

Date: 3/21/2014 **Reporting Period:** 3/20/14-3/21/14

1. Introduction

1.1 Background

Site Number: Z5MX Contract Number: D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

Mobilization Date: 3/14/2014 Start Date: 3/14/2014

Demob Date: 3/21/2014 **Completion Date:**

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline and gasoline/diesel transmix) in drainage ditch and pasture near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identifed yet, however they are pressure testing of replace lines confirm that they were withing casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

Response actions previous to 3/20/14 1900 are documented in previous Polreps 1 thru 6.

The following response actions occurred during operations from 3/20/14 1900 to 3/21/14 1100:

- Buckeye Pipeline contractors onsite included Future Environmental; SET Environmental; CRA; Antea Group and Midwest Contractors.
- Future Environmental continued removing impacted water from the suspected source area, interceptor trench, ponded area, and at the ditch near 1726 Indian trail road, as needed.
- Buckeye's contractor, CRA, performed air monitoring during excavation, in the spill areas and the
 residential area. A total of eight AreaRAEs were operating. In addition, MultiRAEs and Benzene
 UltraRAEs are used near the excavation and residential area. START monitored their live
 AreaRAE data periodically throughout the morning of March 21.
- U.S. EPA's contractor, Weston, performed air monitoring with a MultiRAE PID. VOC readings range from 0-3 ppm in the excavation area and non-detects in the residential area. START deployed 3 Summa Canisters, 1 upwind and 2 downwind of the suspected source area. The samples were run approximately 24-hours and submitted for TO-15 analaysis. Samples were retrieved at approximately 10:30 am.
- SET and vac trucks staged at Zone 3 in the event of a release during pressure test. START documented staging; no sheen was observed.
- Buckeye's contractors "jeeped" the gold and blue replacement pipelines to identify any thin spots in the protective coating, and addressed them as necessary.
- Buckeye meet with a representative of the Illinois Department of Transportation to discuss requirements for restoring State Route 113.
- Buckeye's contractors then began backfilling around the 2 new sections of pipeline.
- Buckeye will continue investigation into the cause of the release.
- Buckeye began removal of additional potentially impacted soil north of State Route 113.
- Antea Group collected additional sidewall samples from excavation pit after pressure tests.
- Antea Group also collected additional soil samples from the "ATV trail area"

- All incident command meetings were suspended as the incident moved beyond the emergency phase.
- EPA OSC reviewed and approved Incident Action Plan for the next multi-day operating period.
- EPA OSC coordinating with Illinois EPA OSC and Kankakee Health Department.
- EPA OSC turned over the incident to Illinois EPA.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste is being staged at Buckeye terminal. The contaminated soil is going to Waste Management Laraway Landfill in Joliet, IL, Contaminated water and free product waste is being shipped to Beaver oil and water/boom/PPE will go to Aaron oil in Alabama.

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
contaminated soil		1049 yd3			staged at Buckeye terminal
contaminated water		55,160 gal			staged in frac tanks at Buckeye terminal
skimmed free product		430 gal			staged in frac tanks at Buckeye terminal

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

At the request of Kankakee Health Department USEPA completed collection of 24-hour air samples upwind and downwind of the Site using Summa Canisters to confirm the non-detects in the Community. Samples were submitted to the lab on the afternoon of March 21.

2.2.1.2 Next Steps

Results of the Summa Cansiter sampling will be shared with the Kankakee Health Department and Illinois EPA as soon as they have been received and validated.

2.2.2 Issues

The site is contained, the pipelines have been replaced, and no release of oil to surface water (Kankakee River) occurred.

2.3 Logistics Section

U.S. EPA and START have demobilized from the site.

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$120,000. OSC is monitoring EPA and START costs.

EPA contractor WESTON has approved budget ceiling of \$73,000, with \$70,000 expended at this time.

2.5 Other Command Staff

2.5.1 Safety Officer

EPA and START provided health and safety oversight.

2.5.2 Liaison Officer

2.5.3 Information Officer

Francisco Arcuate

3. Participating Entities

3.1 Unified Command

USEPA Region 5, Buckeye Pipeline, Kankakee County EMA, Illinois EPA

3.2 Cooperating Agencies

Limestone Fire Department Kankakee County Health Department Kankakee Police Department United States Coast Guard ATSDR

4. Personnel On Site

1 EPA OSC and 2 START were on Site for this reporting period. All EPA and START personnel have demobilized from the site.

5. Definition of Terms

No information available at this time.

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

www.kankakeeroute113release.com - PRP Website

6.2 Reporting Schedule

POLREPS will be issued ongoing.

7. Situational Reference Materials

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION/SITUATION REPORT

Buckeye Pipeline - Kankakee Gasoline Spill - Removal Polrep Final Removal Polrep

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region V

Subject: POLREP #8

Final PolRep

Buckeye Pipeline - Kankakee Gasoline Spill

Kankakee, IL

Latitude: 41.1435080 Longitude: -87.9022360

To:

From: Craig Thomas, OSC

Date: 3/27/2014

Reporting Period: 3/21/14 - 3/27/14

1. Introduction

1.1 Background

Site Number: Z5MX Contract Number: D.O. Number: Action Memo Date:

Response Authority: OPAResponse Type:EmergencyResponse Lead:PRPIncident Category:Removal Action

NPL Status: Non NPL Operable Unit:

 Mobilization Date:
 3/14/2014
 Start Date:
 3/14/2014

 Demob Date:
 3/21/2014
 Completion Date:
 3/27/2014

CERCLIS ID: RCRIS ID:

ERNS No.: State Notification: 03/14/2014

FPN#: E14508 Reimbursable Account #:

1.1.1 Incident Category

Petroleum release (suspected gasoline and gasoline/diesel transmix) in drainage ditch and pasture near Buckeye pipelines in Kankakee, IL

1.1.2 Site Description

The two Buckeye pipelines where the petroleum sheen was encountered are located on IL-113 between Indian Trail Road and Stone Creek Road (1500 W Road) in Kankakee, IL. The site is in a mixed rural and residential area and is located approximately 1500 feet south of the Kankakee River. The drainage ditch where the sheen was located is on the south side of IL-113 and flows west towards a culvert which runs north under IL-113 and toward the Kankakee River.

1.1.2.1 Location

IL-113 and Indian Trail Road, Kankakee, IL

1.1.2.2 Description of Threat

There is a threat to the Kankakee River and groundwater from a gasoline release. Residents located east of the site are on private wells. The drainage ditch flows to the Kankakee River approximately 1500 feet north of the site. Gasoline / product was observed at the surface in a residential yard to the North of the release point. The pipeline crosses under the Kankakee River which is located approximately 1200 feet from the yard. The pipeline and drainage ditch may provide a conduit for gasoline to travel to the navigable waterway.

1.1.3 Preliminary Removal Assessment/Removal Site Inspection Results

Buckeye is excavating near their pipelines to see if there is indeed a pipeline break and what impacts to soil and groundwater occurred.

2. Current Activities

2.1 Operations Section

2.1.1 Narrative

On the morning of March 14, 2014, Buckeye Pipeline reported a release of gasoline from the vicinity of two 8-inch pipelines (162 and 163) near the intersection of State Route 113 and Indian Trail Road, Kankakee, Kankakee County, Illinois 60691. One pipeline was carrying gasoline and the other a transmix of gasoline and diesel. Both pipelines are leaking. The exact locations of the leaks along the pipeline are not identified yet, however they are pressure testing of replace lines confirm that they were withing casing underneath State Route 113. The release was ititially estimated at 500 gallons but is now estimated to be between 1,000 and 1,500 gallons. There is a drainage ditch located west of the suspected release location which leads to the Kankakee River which is located approximately 0.5 miles to the North. A residential community is also located approximately 0.25 miles to the North. There are no reports of impacts to the Kankakee River.

2.1.2 Response Actions to Date

Response actions previous to 3/21/14 1100 are documented in previous Polreps 1 thru 7.

The following response actions occurred during operations from 3/21/14 1100 to 3/27/14 1000:

- Buckeye continued to provide updates on progress metrics and provide laboratory analysis results from environmental samples.
- Buckeye has made preparations to begin installing an initial 6 shallow ground water monitoring wells. Illinois EPA will be working with Buckeye on this effort.
- U.S. EPA's contractor, Weston, received laboratory results from the 3 Summa Canisters, (1 upwind and 2 downwind of the suspected source area) which were collected on March 21, 2014.
 EPA provided these results to ATSDR for review. Based on that review, all results were well below a level which would impact human health.
- EPA OSC coordinated with Illinois EPA OSC and Kankakee Health Department regarding results of EPA samples.

2.1.3 Enforcement Activities, Identity of Potentially Responsible Parties (PRPs)

The responsible party, Buckeye Pipeline has deployed contractors to address the release. On March 14, 2014, OSC Atkociunas issued Buckeye Pipeline personnel a Notice of Federal Interest, which was signed.

2.1.4 Progress Metrics

Waste is being staged at Buckeye terminal. The contaminated soil is going to Waste Management Laraway Landfill in Joliet, IL, Contaminated water and free product waste is being shipped to Beaver oil and water/boom/PPE will go to Aaron oil in Alabama.

Waste Stream	Medium	Quantity	Manifest #	Treatment	Disposal
contaminated soil		1252 yd3			Shipped to Laraway Landfill, Joliet, IL
contaminated water		89,878 gal			Shipped to Beaver Oil
skimmed free product		430 gal			Shipped to Beaver Oil

Regional Metrics				
This is an Integrated River Assessment. The	Miles of river systems cleaned and/or restored	0		
numbers should overlap.	Cubic yards of contaminated sediments removed and/or capped	1252 yd3		
	Gallons of oil/water recovered	90,308 gallons		
	Acres of soil/sediment cleaned up in floodplains and riverbanks	0		
Stand Alone Assessment	Number of contaminated residential yards cleaned up	0		
	Number of workers on site	80+		
Contaminant(s) of Concern	Oil (gasoline and diesel)			
Oil response Tracking				
Estimated volume	Initial amount released	1,500 gallons (estimated)		
	Final amount collected	Unknown (430 gallons product plus 89,878 gallons of oil/water mix and 1252 yd3 of impacted soil)		
CANAPS Info	FPN Ceiling Amount	\$120,000		
	FPN Number	E14508		
	Body of Water affected	Threat to the Kankakee River		
Administrative and Logi	stical Factors (Check X where application	able)		
Precedent-Setting HQ Consultations (e.g., fracking, asbestos)	Community challenges or high involvement	Radiological		
More than one PRP	Endangered Species Act / Essential Fish Habitat issues	Explosives		
AOC	Historic preservation issues	X Residential impacts		
UAO	NPL site	Relocation		

DOJ involved	Remote location	X Drinking water impacted
Criminal Investigation Division involved	Extreme weather or abnormal field season	Environmental justice
Tribal consultation or coordination or other issues	Congressional involvement	High media interest
Statutory Exemption for \$2 Million	Statutory Exemption for 1 Year	Active fire present
Hazmat Entry Conducted – Level A, B or C	Incident or Unified Command established	Actual air release (not threatened)

2.2 Planning Section

2.2.1 Anticipated Activities

2.2.1.1 Planned Response Activities

All planned response activities have been completed and U.S. EPA has turned the incident over to Illinois EPA.

2.2.1.2 Next Steps

None.

2.2.2 Issues

None.

2.3 Logistics Section

U.S. EPA and START demobilized from the site on 03/21/2014.

2.4 Finance Section

2.4.1 Narrative

An FPN was issued for \$120,000. OSC is monitoring EPA and START costs.

EPA contractor WESTON has approved budget ceiling of \$73,000, with approximately \$71,000 expended at this time.

2.5 Other Command Staff

No information available at this time.

3. Participating Entities

3.1 Unified Command

Unified Command has been dissolved.

4. Personnel On Site

All remaining EPA and START personnel demobilized from the site on 3/21/14.

5. Definition of Terms

6. Additional sources of information

6.1 Internet location of additional information/report

www.epaosc.org/BuckeyeKankakeeGas

www.kankakeeroute113release.com - PRP Website

6.2 Reporting Schedule

No further POLREPS will be issued.

7. Situational Reference Materials

ATTACHMENT D LABORATORY ANALYTICAL REPORTS

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

March 18, 2014

Weston Solutions 20 North Wacker Drive Chicago, IL 60606

Telephone: (312) 424-3339 Fax: (312) 424-3330

Analytical Report for STAT Workorder: 14030499 Revision 0

RE: 5-031714-000630-0001, Buckeye-Kankakee Spill

Dear Lisa Graczyk:

STAT Analysis received 10 samples for the referenced project on 3/17/2014 4:15:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Craig Chawla

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: March 18, 2014

Client: Weston Solutions

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill Work Order Sample Summary

Lab Order: 14030499

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14030499-001A	1873 Springview Ln		3/16/2014	3/17/2014
14030499-001B	1873 Springview Ln		3/16/2014	3/17/2014
14030499-002A	1882 Springview Ln		3/16/2014	3/17/2014
14030499-002B	1882 Springview Ln		3/16/2014	3/17/2014
14030499-003A	1908 Springview Ln		3/16/2014	3/17/2014
14030499-003B	1908 Springview Ln		3/16/2014	3/17/2014
14030499-004A	2000B Springview Dr		3/16/2014	3/17/2014
14030499-004B	2000B Springview Dr		3/16/2014	3/17/2014
14030499-005A	BKG-EX3-031614(0-2)		3/16/2014	3/17/2014
14030499-005B	BKG-EX3-031614(0-2)		3/16/2014	3/17/2014
14030499-006A	BKG-SB01-031514(0-2)		3/15/2014	3/17/2014
14030499-006B	BKG-SB01-031514(0-2)		3/15/2014	3/17/2014
14030499-007A	BKG-SB02-031514(0-2)		3/15/2014	3/17/2014
14030499-007B	BKG-SB02-031514(0-2)		3/15/2014	3/17/2014
14030499-008A	BKG-SB07-031614(0-2)		3/16/2014	3/17/2014
14030499-008B	BKG-SB07-031614(0-2)		3/16/2014	3/17/2014
14030499-009A	BKG-SB07-031614(2.0-2.3)		3/16/2014	3/17/2014
14030499-009B	BKG-SB07-031614(2.0-2.3)		3/16/2014	3/17/2014
14030499-010A	TB01-031514		3/15/2014	3/17/2014

STAT Analysis Corporation

Date: March 18, 2014

CLIENT: Weston Solutions

Project: 5-031714-000630-0001, Buckeye-Kankakee Sp **CASE NARRATIVE**

Lab Order: 14030499

Please refer to Analytical QC Summary Report for QC outliers.

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Matrix: Water

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: 1873 Springview Ln

14030499

Collection Page 2/16/2014

Lab Order: 14030499 Collection Date: 3/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID: 14030499-001

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW82	70C-SIM	(SW3510C)	Prep	Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.001		mg/L	1	3/18/2014
Acenaphthylene	ND	0.001		mg/L	1	3/18/2014
Anthracene	ND	0.001		mg/L	1	3/18/2014
Benz(a)anthracene	ND	0.0001		mg/L	1	3/18/2014
Benzo(a)pyrene	ND	0.0001		mg/L	1	3/18/2014
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	3/18/2014
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Chrysene	ND	0.0001		mg/L	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	3/18/2014
Fluoranthene	ND	0.001		mg/L	1	3/18/2014
Fluorene	ND	0.001		mg/L	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	3/18/2014
Naphthalene	ND	0.001		mg/L	1	3/18/2014
Phenanthrene	ND	0.001		mg/L	1	3/18/2014
Pyrene	ND	0.001		mg/L	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW8260B (SW5		5030B)	OB) Prep Date:		Analyst: PS
Acetone	ND	0.02		mg/L	1	3/17/2014
Benzene	ND	0.005		mg/L	1	3/17/2014
Bromodichloromethane	ND	0.005		mg/L	1	3/17/2014
Bromoform	ND	0.005		mg/L	1	3/17/2014
Bromomethane	ND	0.01		mg/L	1	3/17/2014
2-Butanone	ND	0.02		mg/L	1	3/17/2014
Carbon disulfide	ND	0.01		mg/L	1	3/17/2014
Carbon tetrachloride	ND	0.005		mg/L	1	3/17/2014
Chlorobenzene	ND	0.005		mg/L	1	3/17/2014
Chloroethane	ND	0.01		mg/L	1	3/17/2014
Chloroform	ND	0.005		mg/L	1	3/17/2014
Chloromethane	ND	0.01		mg/L	1	3/17/2014
Dibromochloromethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
cis-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloropropane	ND	0.005		mg/L	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Lab Order: 14030499 Client Sample ID: 1873 Springview Ln

Collection Date: 3/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Matrix: Water

Lab ID: 14030499-001

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	Prep	Date:	Analyst: PS	
Ethylbenzene	ND	0.005	mg/L	1	3/17/2014
2-Hexanone	ND	0.02	mg/L	1	3/17/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/17/2014
Methylene chloride	ND	0.005	mg/L	1	3/17/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/17/2014
Styrene	ND	0.005	mg/L	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/17/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/17/2014
Toluene	ND	0.005	mg/L	1	3/17/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
Trichloroethene	ND	0.005	mg/L	1	3/17/2014
Vinyl chloride	ND	0.002	mg/L	1	3/17/2014
Xylenes, Total	ND	0.015	mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Lab Order: 14030499 Collection Date: 2/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill Collection Date: 3/16/2014

Matrix: Water

Lab ID: 14030499-002

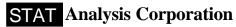
Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW82	70C-SIM	(SW3510C)	Prep	Date: 3/17/20	014 Analyst: DM
Acenaphthene	ND	0.001		mg/L	1	3/18/2014
Acenaphthylene	ND	0.001		mg/L	1	3/18/2014
Anthracene	ND	0.001		mg/L	1	3/18/2014
Benz(a)anthracene	ND	0.0001		mg/L	1	3/18/2014
Benzo(a)pyrene	ND	0.0001		mg/L	1	3/18/2014
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	3/18/2014
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Chrysene	ND	0.0001		mg/L	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	3/18/2014
Fluoranthene	ND	0.001		mg/L	1	3/18/2014
Fluorene	ND	0.001		mg/L	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	3/18/2014
Naphthalene	ND	0.001		mg/L	1	3/18/2014
Phenanthrene	ND	0.001		mg/L	1	3/18/2014
Pyrene	ND	0.001		mg/L	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW8260B (SW50		5030B)	Prep Date:		Analyst: PS
Acetone	ND	0.02		mg/L	1	3/17/2014
Benzene	ND	0.005		mg/L	1	3/17/2014
Bromodichloromethane	ND	0.005		mg/L	1	3/17/2014
Bromoform	ND	0.005		mg/L	1	3/17/2014
Bromomethane	ND	0.01		mg/L	1	3/17/2014
2-Butanone	ND	0.02		mg/L	1	3/17/2014
Carbon disulfide	ND	0.01		mg/L	1	3/17/2014
Carbon tetrachloride	ND	0.005		mg/L	1	3/17/2014
Chlorobenzene	ND	0.005		mg/L	1	3/17/2014
Chloroethane	ND	0.01		mg/L	1	3/17/2014
Chloroform	ND	0.005		mg/L	1	3/17/2014
Chloromethane	ND	0.01		mg/L	1	3/17/2014
Dibromochloromethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
cis-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloropropane	ND	0.005		mg/L	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Matrix: Water

Date Printed: March 18, 2014

Client: Weston Solutions

Lab Order: 14030499 Collection Date: 2/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID: 14030499-002

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	Prep	Date:	Analyst: PS	
Ethylbenzene	ND	0.005	mg/L	1	3/17/2014
2-Hexanone	ND	0.02	mg/L	1	3/17/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/17/2014
Methylene chloride	ND	0.005	mg/L	1	3/17/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/17/2014
Styrene	ND	0.005	mg/L	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/17/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/17/2014
Toluene	ND	0.005	mg/L	1	3/17/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
Trichloroethene	ND	0.005	mg/L	1	3/17/2014
Vinyl chloride	ND	0.002	mg/L	1	3/17/2014
Xylenes, Total	ND	0.015	mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: 1908 Springview Ln 14030499

Collection Date: 3/16/2014 5-031714-000630-0001, Buckeye-Kankakee Spill Project:

Matrix: Water

14030499-003

Lab Order:

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW82	270C-SIM	(SW3510C)	Prep	Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.001		mg/L	1	3/18/2014
Acenaphthylene	ND	0.001		mg/L	1	3/18/2014
Anthracene	ND	0.001		mg/L	1	3/18/2014
Benz(a)anthracene	ND	0.0001		mg/L	1	3/18/2014
Benzo(a)pyrene	ND	0.0001		mg/L	1	3/18/2014
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	3/18/2014
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Chrysene	ND	0.0001		mg/L	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	3/18/2014
Fluoranthene	ND	0.001		mg/L	1	3/18/2014
Fluorene	ND	0.001		mg/L	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	3/18/2014
Naphthalene	ND	0.001		mg/L	1	3/18/2014
Phenanthrene	ND	0.001		mg/L	1	3/18/2014
Pyrene	ND	0.001		mg/L	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW82	260B (SW	5030B)	Prep	Date:	Analyst: PS
Acetone	ND	0.02		mg/L	1	3/17/2014
Benzene	ND	0.005		mg/L	1	3/17/2014
Bromodichloromethane	ND	0.005		mg/L	1	3/17/2014
Bromoform	ND	0.005		mg/L	1	3/17/2014
Bromomethane	ND	0.01		mg/L	1	3/17/2014
2-Butanone	ND	0.02		mg/L	1	3/17/2014
Carbon disulfide	ND	0.01		mg/L	1	3/17/2014
Carbon tetrachloride	ND	0.005		mg/L	1	3/17/2014
Chlorobenzene	ND	0.005		mg/L	1	3/17/2014
Chloroethane	ND	0.01		mg/L	1	3/17/2014
Chloroform	ND	0.005		mg/L	1	3/17/2014
Chloromethane	ND	0.01		mg/L	1	3/17/2014
Dibromochloromethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
cis-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloropropane	ND	0.005		mg/L	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Lab Order: 14030499 Client Sample ID: 1908 Springview Ln

Collection Date: 3/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill Matrix: Water

Lab ID: 14030499-003

Analyses	Result	RL Qualifier	r Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW8260B (SW5030B)		Prep	Date:	Analyst: PS
Ethylbenzene	ND	0.005	mg/L	1	3/17/2014
2-Hexanone	ND	0.02	mg/L	1	3/17/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/17/2014
Methylene chloride	ND	0.005	mg/L	1	3/17/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/17/2014
Styrene	ND	0.005	mg/L	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/17/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/17/2014
Toluene	ND	0.005	mg/L	1	3/17/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
Trichloroethene	ND	0.005	mg/L	1	3/17/2014
Vinyl chloride	ND	0.002	mg/L	1	3/17/2014
Xylenes, Total	ND	0.015	mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: 2000B Springview Dr Lab Order: 14030499 Collection Date: 3/16/2014

5-031714-000630-0001, Buckeye-Kankakee Spill Project: Matrix: Water

Lab ID: 14030499-004

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW82	270C-SIM	(SW3510C)	Prep	Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.001		mg/L	1	3/18/2014
Acenaphthylene	ND	0.001		mg/L	1	3/18/2014
Anthracene	ND	0.001		mg/L	1	3/18/2014
Benz(a)anthracene	ND	0.0001		mg/L	1	3/18/2014
Benzo(a)pyrene	ND	0.0001		mg/L	1	3/18/2014
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	3/18/2014
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	3/18/2014
Chrysene	ND	0.0001		mg/L	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	3/18/2014
Fluoranthene	ND	0.001		mg/L	1	3/18/2014
Fluorene	ND	0.001		mg/L	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	3/18/2014
Naphthalene	ND	0.001		mg/L	1	3/18/2014
Phenanthrene	ND	0.001		mg/L	1	3/18/2014
Pyrene	ND	0.001		mg/L	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW82	260B (SW	5030B)	Prep	Date:	Analyst: PS
Acetone	ND	0.02		mg/L	1	3/17/2014
Benzene	ND	0.005		mg/L	1	3/17/2014
Bromodichloromethane	ND	0.005		mg/L	1	3/17/2014
Bromoform	ND	0.005		mg/L	1	3/17/2014
Bromomethane	ND	0.01		mg/L	1	3/17/2014
2-Butanone	ND	0.02		mg/L	1	3/17/2014
Carbon disulfide	ND	0.01		mg/L	1	3/17/2014
Carbon tetrachloride	ND	0.005		mg/L	1	3/17/2014
Chlorobenzene	ND	0.005		mg/L	1	3/17/2014
Chloroethane	ND	0.01		mg/L	1	3/17/2014
Chloroform	ND	0.005		mg/L	1	3/17/2014
Chloromethane	ND	0.01		mg/L	1	3/17/2014
Dibromochloromethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloroethane	ND	0.005		mg/L	1	3/17/2014
1,1-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
cis-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.005		mg/L	1	3/17/2014
1,2-Dichloropropane	ND	0.005		mg/L	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.001		mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Matrix: Water

Date Printed: March 18, 2014

Client: Weston Solutions

Lab Order: 14030499 Collection Potes 2/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID: 14030499-004

Analyses	Result	RL Qualifier	r Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW8260B (SW5030B)		Prep	Date:	Analyst: PS
Ethylbenzene	ND	0.005	mg/L	1	3/17/2014
2-Hexanone	ND	0.02	mg/L	1	3/17/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/17/2014
Methylene chloride	ND	0.005	mg/L	1	3/17/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/17/2014
Styrene	ND	0.005	mg/L	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/17/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/17/2014
Toluene	ND	0.005	mg/L	1	3/17/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
Trichloroethene	ND	0.005	mg/L	1	3/17/2014
Vinyl chloride	ND	0.002	mg/L	1	3/17/2014
Xylenes, Total	ND	0.015	mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

 \boldsymbol{J} - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Client Sample ID: BKG-EX3-031614(0-2)

Date Printed: March 18, 2014

Client: Weston Solutions

14030499

Lab Order: Collection Date: 3/16/2014 5-031714-000630-0001, Buckeye-Kankakee Spill Project:

Matrix: Soil Lab ID: 14030499-005

Analyses	esult	RL (Qualifier	Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW8015M	I (SW35	580A)	Prep	Date: 3/17/2014	Analyst: MDM
TPH (GRO)	ND	23	r	mg/Kg-dry	1	3/17/2014
TPH (DRO)	ND	23	r	mg/Kg-dry	1	3/17/2014
TPH (ERO)	ND	23	* r	mg/Kg-dry	1	3/17/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8270C	(SW35	550B)	Prep	Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Acenaphthylene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Anthracene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Benz(a)anthracene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Benzo(a)pyrene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Benzo(b)fluoranthene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Benzo(k)fluoranthene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Chrysene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Fluoranthene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Fluorene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Naphthalene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Phenanthrene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Pyrene	ND	0.04	r	mg/Kg-dry	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW5035/8	3260B		Prep	Date: 3/17/2014	Analyst: PS
Acetone	ND	0.071	r	mg/Kg-dry	1	3/17/2014
Benzene 0.	0052 0	0.0047	r	mg/Kg-dry	1	3/17/2014
Bromodichloromethane	ND 0	0.0047	r	mg/Kg-dry	1	3/17/2014
Bromoform	ND 0	0.0047	r	mg/Kg-dry	1	3/17/2014
Bromomethane	ND 0	0.0095	r	mg/Kg-dry	1	3/17/2014
2-Butanone	ND	0.071	r	mg/Kg-dry	1	3/17/2014
Carbon disulfide	ND	0.047	r	mg/Kg-dry	1	3/17/2014
Carbon tetrachloride	ND 0	0.0047	r	mg/Kg-dry	1	3/17/2014
Chlorobenzene	ND 0	0.0047	r	mg/Kg-dry	1	3/17/2014
Chloroethane	ND 0	0.0095	r	mg/Kg-dry	1	3/17/2014
Chloroform	ND 0	0.0047	r	mg/Kg-dry	1	3/17/2014
Chloromethane	ND 0	0.0095		mg/Kg-dry	1	3/17/2014
Dibromochloromethane	ND 0	0.0047		mg/Kg-dry	1	3/17/2014
1,1-Dichloroethane	ND 0	0.0047		mg/Kg-dry	1	3/17/2014
1,2-Dichloroethane	ND 0	0.0047		mg/Kg-dry	1	3/17/2014
1,1-Dichloroethene	ND 0	0.0047	r	mg/Kg-dry	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Qualifiers:

Client Sample ID: BKG-EX3-031614(0-2) 14030499

Lab Order: Collection Date: 3/16/2014 5-031714-000630-0001, Buckeye-Kankakee Spill **Project:**

Matrix: Soil Lah ID:

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 3/17/2014	Analyst: PS
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	3/17/2014
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	3/17/2014
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	3/17/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	3/17/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	3/17/2014
Methylene chloride	ND	0.0095	mg/Kg-dry	1	3/17/2014
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	3/17/2014
Styrene	ND	0.0047	mg/Kg-dry	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	3/17/2014
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	3/17/2014
Toluene	0.023	0.0047	mg/Kg-dry	1	3/17/2014
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	3/17/2014
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	3/17/2014
Trichloroethene	ND	0.0047	mg/Kg-dry	1	3/17/2014
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	3/17/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	3/17/2014
Percent Moisture	D297	4	Prep	Date: 3/17/2014	Analyst: VA
Percent Moisture	17.2	0.2	* wt%	1	3/18/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: BKG-SB01-031514(0-2) 14030499

Lab Order: Collection Date: 3/15/2014

5-031714-000630-0001, Buckeye-Kankakee Spill Project: Matrix: Soil

Lab ID: 14030499-006

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW80	015M (SW3580A)	Prep [Date: 3/17/2014	Analyst: MDM
TPH (GRO)	ND	23	mg/Kg-dry	1	3/17/2014
TPH (DRO)	ND	23	mg/Kg-dry	1	3/17/2014
TPH (ERO)	ND	23 *	mg/Kg-dry	1	3/17/2014
Polynuclear Aromatic Hydrocarbons by GC/M	S SW82	270C (SW3550B)	Prep [Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.039	mg/Kg-dry	1	3/18/2014
Acenaphthylene	ND	0.039	mg/Kg-dry	1	3/18/2014
Anthracene	ND	0.039	mg/Kg-dry	1	3/18/2014
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	3/18/2014
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	3/18/2014
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	3/18/2014
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	3/18/2014
Chrysene	ND	0.039	mg/Kg-dry	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	3/18/2014
Fluoranthene	ND	0.039	mg/Kg-dry	1	3/18/2014
Fluorene	ND	0.039	mg/Kg-dry	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	3/18/2014
Naphthalene	ND	0.039	mg/Kg-dry	1	3/18/2014
Phenanthrene	ND	0.039	mg/Kg-dry	1	3/18/2014
Pyrene	ND	0.039	mg/Kg-dry	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep [Date: 3/17/2014	Analyst: PS
Acetone	ND	0.066	mg/Kg-dry	1	3/17/2014
Benzene	ND	0.0044	mg/Kg-dry	1	3/17/2014
Bromodichloromethane	ND	0.0044	mg/Kg-dry	1	3/17/2014
Bromoform	ND	0.0044	mg/Kg-dry	1	3/17/2014
Bromomethane	ND	0.0087	mg/Kg-dry	1	3/17/2014
2-Butanone	ND	0.066	mg/Kg-dry	1	3/17/2014
Carbon disulfide	ND	0.044	mg/Kg-dry	1	3/17/2014
Carbon tetrachloride	ND	0.0044	mg/Kg-dry	1	3/17/2014
Chlorobenzene	ND	0.0044	mg/Kg-dry	1	3/17/2014
Chloroethane	ND	0.0087	mg/Kg-dry	1	3/17/2014
Chloroform	ND	0.0044	mg/Kg-dry	1	3/17/2014
Chloromethane	ND	0.0087	mg/Kg-dry	1	3/17/2014
Dibromochloromethane	ND	0.0044	mg/Kg-dry	1	3/17/2014
1,1-Dichloroethane	ND	0.0044	mg/Kg-dry	1	3/17/2014
1,2-Dichloroethane	ND	0.0044	mg/Kg-dry	1	3/17/2014
1,1-Dichloroethene	ND	0.0044	mg/Kg-dry	1	3/17/2014
			5 5 7		

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

3/18/2014

Matrix: Soil

Date Printed: March 18, 2014

Client: Weston Solutions

Percent Moisture

Qualifiers:

Client Sample ID: BKG-SB01-031514(0-2)

Lab Order: 14030499 Collection Date: 3/15/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID: 14030499-006

Analyses Result **RL Qualifier Units** DF **Date Analyzed Volatile Organic Compounds by GC/MS** SW5035/8260B Prep Date: 3/17/2014 Analyst: PS cis-1,2-Dichloroethene ND mg/Kg-dry 3/17/2014 0.0044 0.0044 trans-1,2-Dichloroethene ND mg/Kg-dry 1 3/17/2014 ND 1 3/17/2014 1,2-Dichloropropane 0.0044 mg/Kg-dry cis-1,3-Dichloropropene ND 0.0018 mg/Kg-dry 1 3/17/2014 trans-1,3-Dichloropropene ND 0.0018 mg/Kg-dry 1 3/17/2014 Ethylbenzene ND 0.0044 mg/Kg-dry 1 3/17/2014 2-Hexanone ND 0.018 mg/Kg-dry 1 3/17/2014 4-Methyl-2-pentanone ND 0.018 1 3/17/2014 mg/Kg-dry Methylene chloride ND 0.0087 3/17/2014 mg/Kg-dry 1 3/17/2014 ND Methyl tert-butyl ether 0.0044 mg/Kg-dry 1 Styrene ND 0.0044 mg/Kg-dry 1 3/17/2014 1,1,2,2-Tetrachloroethane ND 1 3/17/2014 0.0044 mg/Kg-dry Tetrachloroethene ND 0.0044 mg/Kg-dry 1 3/17/2014 ND Toluene 0.0044 mg/Kg-dry 1 3/17/2014 1,1,1-Trichloroethane ND 0.0044 1 3/17/2014 mg/Kg-dry 1,1,2-Trichloroethane ND 0.0044 mg/Kg-dry 1 3/17/2014 Trichloroethene ND 0.0044 3/17/2014 mg/Kg-dry 1 Vinyl chloride ND 0.0044 mg/Kg-dry 3/17/2014 Xylenes, Total ND 0.013 mg/Kg-dry 1 3/17/2014 **Percent Moisture** D2974 Prep Date: 3/17/2014 Analyst: VA

0.2

16.4

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

wt%

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: BKG-SB02-031514(0-2) 14030499

Lab Order: Collection Date: 3/15/2014

5-031714-000630-0001, Buckeye-Kankakee Spill Project: Matrix: Soil

Lab ID: 14030499-007

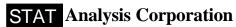
Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW80 ⁻	15M (SW3580A)	Prep	Date: 3/17/2014	Analyst: MDM
TPH (GRO)	ND	22	mg/Kg-dry	1	3/17/2014
TPH (DRO)	ND	22	mg/Kg-dry	1	3/17/2014
TPH (ERO)	ND	22 *	mg/Kg-dry	1	3/17/2014
Polynuclear Aromatic Hydrocarbons by GC	C/MS SW82	70C (SW3550B)	Prep	Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.04	mg/Kg-dry	1	3/18/2014
Acenaphthylene	ND	0.04	mg/Kg-dry	1	3/18/2014
Anthracene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benz(a)anthracene	0.11	0.04	mg/Kg-dry	1	3/18/2014
Benzo(a)pyrene	0.076	0.04	mg/Kg-dry	1	3/18/2014
Benzo(b)fluoranthene	0.087	0.04	mg/Kg-dry	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benzo(k)fluoranthene	0.071	0.04	mg/Kg-dry	1	3/18/2014
Chrysene	0.11	0.04	mg/Kg-dry	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.04	mg/Kg-dry	1	3/18/2014
Fluoranthene	0.28	0.04	mg/Kg-dry	1	3/18/2014
Fluorene	ND	0.04	mg/Kg-dry	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.04	mg/Kg-dry	1	3/18/2014
Naphthalene	ND	0.04	mg/Kg-dry	1	3/18/2014
Phenanthrene	0.15	0.04	mg/Kg-dry	1	3/18/2014
Pyrene	0.22	0.04	mg/Kg-dry	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/17/2014	Analyst: PS
Acetone	ND	0.069	mg/Kg-dry	1	3/17/2014
Benzene	ND	0.0046	mg/Kg-dry	1	3/17/2014
Bromodichloromethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
Bromoform	ND	0.0046	mg/Kg-dry	1	3/17/2014
Bromomethane	ND	0.0092	mg/Kg-dry	1	3/17/2014
2-Butanone	ND	0.069	mg/Kg-dry	1	3/17/2014
Carbon disulfide	ND	0.046	mg/Kg-dry	1	3/17/2014
Carbon tetrachloride	ND	0.0046	mg/Kg-dry	1	3/17/2014
Chlorobenzene	ND	0.0046	mg/Kg-dry	1	3/17/2014
Chloroethane	ND	0.0092	mg/Kg-dry	1	3/17/2014
Chloroform	ND	0.0046	mg/Kg-dry	1	3/17/2014
Chloromethane	ND	0.0092	mg/Kg-dry	1	3/17/2014
Dibromochloromethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,1-Dichloroethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,2-Dichloroethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,1-Dichloroethene	ND	0.0046	mg/Kg-dry	1	3/17/2014
.,. Distributions	.10	0.00.0	mg/ng ary	•	O/ 11/2017

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: BKG-SB02-031514(0-2)

Lab Order: 14030499 Collection Date: 3/15/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID: 14030499-007 Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/17/2014	Analyst: PS
cis-1,2-Dichloroethene	ND	0.0046	mg/Kg-dry	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,2-Dichloropropane	ND	0.0046	mg/Kg-dry	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	3/17/2014
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	3/17/2014
2-Hexanone	ND	0.018	mg/Kg-dry	1	3/17/2014
4-Methyl-2-pentanone	ND	0.018	mg/Kg-dry	1	3/17/2014
Methylene chloride	ND	0.0092	mg/Kg-dry	1	3/17/2014
Methyl tert-butyl ether	ND	0.0046	mg/Kg-dry	1	3/17/2014
Styrene	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
Tetrachloroethene	ND	0.0046	mg/Kg-dry	1	3/17/2014
Toluene	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,1,1-Trichloroethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
1,1,2-Trichloroethane	ND	0.0046	mg/Kg-dry	1	3/17/2014
Trichloroethene	ND	0.0046	mg/Kg-dry	1	3/17/2014
Vinyl chloride	ND	0.0046	mg/Kg-dry	1	3/17/2014
Xylenes, Total	ND	0.014	mg/Kg-dry	1	3/17/2014
Percent Moisture	D297	4	Prep	Date: 3/17/2014	Analyst: VA
Percent Moisture	18.7	0.2	* wt%	1	3/18/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: BKG-SB07-031614(0-2)

Lab Order: 14030499 **Collection Date**: 3/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill Matrix: Soil

Lab ID: 14030499-008

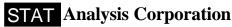
Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW80	15M (SW358	80A) Prep	Date: 3/17/2014	Analyst: MDM
TPH (GRO)	ND	23	mg/Kg-dry	1	3/17/2014
TPH (DRO)	ND	23	mg/Kg-dry	1	3/17/2014
TPH (ERO)	ND	23	* mg/Kg-dry	1	3/17/2014
Polynuclear Aromatic Hydrocarbons by GC/M	S SW82	70C (SW355	50B) Prep	Date: 3/17/2014	Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-dry	1	3/18/2014
Acenaphthylene	ND	0.041	mg/Kg-dry	1	3/18/2014
Anthracene	ND	0.041	mg/Kg-dry	1	3/18/2014
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	3/18/2014
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	3/18/2014
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	3/18/2014
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	3/18/2014
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	3/18/2014
Chrysene	ND	0.041	mg/Kg-dry	1	3/18/2014
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	3/18/2014
Fluoranthene	ND	0.041	mg/Kg-dry	1	3/18/2014
Fluorene	ND	0.041	mg/Kg-dry	1	3/18/2014
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	3/18/2014
Naphthalene	ND	0.041	mg/Kg-dry	1	3/18/2014
Phenanthrene	ND	0.041	mg/Kg-dry	1	3/18/2014
Pyrene	ND	0.041	mg/Kg-dry	1	3/18/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/17/2014	Analyst: PS
Acetone	ND	0.093	mg/Kg-dry	1	3/17/2014
Benzene	5.6	0.32	mg/Kg-dry	50	3/18/2014
Bromodichloromethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
Bromoform	ND	0.0062	mg/Kg-dry	1	3/17/2014
Bromomethane	ND	0.012	mg/Kg-dry	1	3/17/2014
2-Butanone	ND	0.093	mg/Kg-dry	1	3/17/2014
Carbon disulfide	ND	0.062	mg/Kg-dry	1	3/17/2014
Carbon tetrachloride	ND	0.0062	mg/Kg-dry	1	3/17/2014
Chlorobenzene	ND	0.0062	mg/Kg-dry	1	3/17/2014
Chloroethane	ND	0.012	mg/Kg-dry	1	3/17/2014
Chloroform	ND	0.0062	mg/Kg-dry	1	3/17/2014
Chloromethane	ND	0.012	mg/Kg-dry	1	3/17/2014
Dibromochloromethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
1,1-Dichloroethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
1,2-Dichloroethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
1,1-Dichloroethene	ND	0.0062	mg/Kg-dry	1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: BKG-SB07-031614(0-2) Lab Order: 14030499

Collection Date: 3/16/2014 **Project:** 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID:

Matrix: Soil 14030499-008

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/17/2014	Analyst: PS
cis-1,2-Dichloroethene	ND	0.0062	mg/Kg-dry	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.0062	mg/Kg-dry	1	3/17/2014
1,2-Dichloropropane	ND	0.0062	mg/Kg-dry	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.0025	mg/Kg-dry	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.0025	mg/Kg-dry	1	3/17/2014
Ethylbenzene	14	6.5	mg/Kg-dry	1000	3/18/2014
2-Hexanone	ND	0.025	mg/Kg-dry	1	3/17/2014
4-Methyl-2-pentanone	ND	0.025	mg/Kg-dry	1	3/17/2014
Methylene chloride	ND	0.012	mg/Kg-dry	1	3/17/2014
Methyl tert-butyl ether	ND	0.0062	mg/Kg-dry	1	3/17/2014
Styrene	ND	0.0062	mg/Kg-dry	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
Tetrachloroethene	ND	0.0062	mg/Kg-dry	1	3/17/2014
Toluene	56	6.5	mg/Kg-dry	1000	3/18/2014
1,1,1-Trichloroethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
1,1,2-Trichloroethane	ND	0.0062	mg/Kg-dry	1	3/17/2014
Trichloroethene	ND	0.0062	mg/Kg-dry	1	3/17/2014
Vinyl chloride	ND	0.0062	mg/Kg-dry	1	3/17/2014
Xylenes, Total	76	19	mg/Kg-dry	1000	3/18/2014
Percent Moisture	D297	4	Prep	Date: 3/17/2014	Analyst: VA
Percent Moisture	19.3	0.2	* wt%	1	3/18/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014 ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions Client Sample ID: BKG-SB07-031614(2.0-2.3)

Lab Order: 14030499 **Collection Date**: 3/16/2014

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Matrix: Soil

Lab ID: 14030499-009

TPH (GRO) ND 22 mg/Kg-dry 1 3/18/2014 TPH (DRO) ND 22 mg/Kg-dry 1 3/18/2014 TPH (ERO) ND 22 mg/Kg-dry 1 3/18/2014 Polynuclear Aromatic Hydrocarbons by GC/MS SW8270C (SW3550B) Prep Date: 3/17/2014 Analyst: DM Acenaphthene ND 0.04 mg/Kg-dry 1 3/18/2014 Acenaphthylene ND 0.04 mg/Kg-dry 1 3/18/2014 Anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benz(a)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(b)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g,h,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014	Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
TPH (BRO) ND 22 mg/Kg-dry 1 3/18/2014 POlynuclear Aromatic Hydrocarbons by GC/MS SW8270C (SW3550B) Prep Date: 3/17/2014 Analyst: DM Acenaphthene ND 0.04 mg/Kg-dry 1 3/18/2014 Acenaphthylene ND 0.04 mg/Kg-dry 1 3/18/2014 Anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Chysene ND 0.04 mg/Kg-dry 1 3/18/2014 Chysene ND	Total Petroleum Hydrocarbons	SW8015M	(SW3580A)	Prep [Date: 3/17/2014	Analyst: MDM
TPH (ERO) ND 22 * mg/kg-dry 1 3/18/2014 Polynuclear Aromatic Hydrocarbons by GC/Ms SW8270C (SW3550B) Prep Date: 3/17/2014 Analyst: DM Acenaphthylene ND 0.04 mg/kg-dry 1 3/18/2014 Acenaphthylene ND 0.04 mg/kg-dry 1 3/18/2014 Acenaphthylene ND 0.04 mg/kg-dry 1 3/18/2014 Acenaphtylene ND 0.04 mg/kg-dry 1 3/18/2014 Benzo(a)prirene ND 0.04 mg/kg-dry 1 3/18/2014 Benzo(b)fluoranthene ND 0.04 mg/kg-dry	TPH (GRO)	ND	22	mg/Kg-dry	1	3/18/2014
Polynuclear Aromatic Hydrocarbons by GC/MS SW8270C (SW3550B) Prep Date: 3/17/2014 Analyst: DM	TPH (DRO)	ND	22	mg/Kg-dry	1	3/18/2014
Acenaphthene ND 0.04 mg/Kg-dry 1 3/18/2014 Acenaphthylene ND 0.04 mg/Kg-dry 1 3/18/2014 Anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(b)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(b)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Dibenz(a, h)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 ND <t< td=""><td>TPH (ERO)</td><td>ND</td><td>22 *</td><td>mg/Kg-dry</td><td>1</td><td>3/18/2014</td></t<>	TPH (ERO)	ND	22 *	mg/Kg-dry	1	3/18/2014
Acenaphthylene ND 0.04 mg/Kg-dry 1 3/18/2014 Anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benz(a)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)pryene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(gh,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(gh)lioranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(gh)lioranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Nprince <t< td=""><td>Polynuclear Aromatic Hydrocarbons by GC/M</td><td>S SW8270C</td><td>(SW3550B)</td><td>Prep [</td><td>Date: 3/17/2014</td><td>Analyst: DM</td></t<>	Polynuclear Aromatic Hydrocarbons by GC/M	S SW8270C	(SW3550B)	Prep [Date: 3/17/2014	Analyst: DM
Anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benz(a)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g)h,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g,h,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g,h,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Benzene 1.1 0.33 mg/Kg-dry 1 3/18/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomofrm ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomofrm ND 0.0049 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.0049 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.0049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorotem ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorotem ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorotem ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorotemhane ND 0.0049 mg/Kg-dry 1 3/1	Acenaphthene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benz(a)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(a)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(b)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Report ne ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053	Acenaphthylene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benzo(a)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(b)fituoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g,h,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fituoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Dibenz(a,h)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Volatile Organic	Anthracene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benzo(b)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(g,h,i)perylene ND 0.04 mg/Kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/Kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Dibenz(a,h)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone	Benz(a)anthracene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benzo(g,h,i)perylene ND 0.04 mg/kg-dry 1 3/18/2014 Benzo(k)fluoranthene ND 0.04 mg/kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/kg-dry 1 3/18/2014 Dibenz(a,h)anthracene ND 0.04 mg/kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/kg-dry 1 3/18/2014 Pyrene 0.055 SW5035/8260B Prep Date: 3/17/2014 Analyst: PS	Benzo(a)pyrene	ND	0.04	mg/Kg-dry	1	3/18/2014
Benzo(k)fluoranthene ND 0.04 mg/kg-dry 1 3/18/2014 Chrysene ND 0.04 mg/kg-dry 1 3/18/2014 Dibenz(a,h)anthracene ND 0.04 mg/kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/kg-dry 1 3/18/2014 Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/kg-dry 1 3/17/2014 Ben	Benzo(b)fluoranthene	ND	0.04	mg/Kg-dry	1	3/18/2014
Chrysene ND 0.04 mg/Kg-dry 1 3/18/2014 Dibenz(a,h)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indenot (2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.	Benzo(g,h,i)perylene	ND	0.04	mg/Kg-dry	1	3/18/2014
Dibenz(a,h)anthracene ND 0.04 mg/Kg-dry 1 3/18/2014 Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 1 3/17/2014 Bromodichloromethane ND	Benzo(k)fluoranthene	ND	0.04	mg/Kg-dry	1	3/18/2014
Fluoranthene 0.065 0.04 mg/Kg-dry 1 3/18/2014 Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0049 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.0075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND </td <td>Chrysene</td> <td>ND</td> <td>0.04</td> <td>mg/Kg-dry</td> <td>1</td> <td>3/18/2014</td>	Chrysene	ND	0.04	mg/Kg-dry	1	3/18/2014
Fluorene ND 0.04 mg/Kg-dry 1 3/18/2014 Indeno(1,2,3-cd)pyrene ND 0.04 mg/Kg-dry 1 3/18/2014 Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.0049 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.0049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorothane ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry	Dibenz(a,h)anthracene	ND	0.04	mg/Kg-dry	1	3/18/2014
Indeno(1,2,3-cd)pyrene	Fluoranthene	0.065	0.04	mg/Kg-dry	1	3/18/2014
Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene	Fluorene	ND	0.04	mg/Kg-dry	1	3/18/2014
Naphthalene ND 0.04 mg/Kg-dry 1 3/18/2014 Phenanthrene ND 0.04 mg/Kg-dry 1 3/18/2014 Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene	Indeno(1,2,3-cd)pyrene	ND	0.04	mg/Kg-dry	1	3/18/2014
Pyrene 0.053 0.04 mg/Kg-dry 1 3/18/2014 Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.075 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroform N		ND	0.04	mg/Kg-dry	1	3/18/2014
Volatile Organic Compounds by GC/MS SW5035/8260B Prep Date: 3/17/2014 Analyst: PS Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane </td <td>Phenanthrene</td> <td>ND</td> <td>0.04</td> <td>mg/Kg-dry</td> <td>1</td> <td>3/18/2014</td>	Phenanthrene	ND	0.04	mg/Kg-dry	1	3/18/2014
Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethan	Pyrene	0.053	0.04	mg/Kg-dry	1	3/18/2014
Acetone 0.16 0.075 mg/Kg-dry 1 3/17/2014 Benzene 1.1 0.33 mg/Kg-dry 50 3/18/2014 Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane<	Volatile Organic Compounds by GC/MS	SW5035/8	3260B	Prep [Date: 3/17/2014	Analyst: PS
Bromodichloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Acetone	0.16	0.075	mg/Kg-dry	1	-
Bromoform ND 0.0049 mg/Kg-dry 1 3/17/2014 Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Benzene	1.1	0.33	mg/Kg-dry	50	3/18/2014
Bromomethane ND 0.0099 mg/Kg-dry 1 3/17/2014 2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Bromodichloromethane	ND (0.0049	mg/Kg-dry	1	3/17/2014
2-Butanone ND 0.075 mg/Kg-dry 1 3/17/2014 Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Bromoform	ND (0.0049	mg/Kg-dry	1	3/17/2014
Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Bromomethane	ND (0.0099	mg/Kg-dry	1	3/17/2014
Carbon disulfide ND 0.049 mg/Kg-dry 1 3/17/2014 Carbon tetrachloride ND 0.0049 mg/Kg-dry 1 3/17/2014 Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	2-Butanone	ND	0.075	mg/Kg-dry	1	3/17/2014
Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Carbon disulfide	ND	0.049		1	3/17/2014
Chlorobenzene ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Carbon tetrachloride	ND (0.0049	mg/Kg-dry	1	3/17/2014
Chloroethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Chlorobenzene	ND (0.0049	mg/Kg-dry	1	3/17/2014
Chloroform ND 0.0049 mg/Kg-dry 1 3/17/2014 Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Chloroethane	ND (0.0099		1	3/17/2014
Chloromethane ND 0.0099 mg/Kg-dry 1 3/17/2014 Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Chloroform				1	
Dibromochloromethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Chloromethane				1	
1,1-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014 1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	Dibromochloromethane	ND (0.0049		1	3/17/2014
1,2-Dichloroethane ND 0.0049 mg/Kg-dry 1 3/17/2014	1,1-Dichloroethane	ND (0.0049		1	3/17/2014
		ND (0.0049		1	3/17/2014
	1,1-Dichloroethene	ND (0.0049		1	3/17/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Matrix: Soil

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: BKG-SB07-031614(2.0-2.3) **Lab Order:** 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Lab ID: 14030499-009

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/17/2014	Analyst: PS
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	3/17/2014
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	3/17/2014
Ethylbenzene	2.8	0.33	mg/Kg-dry	50	3/18/2014
2-Hexanone	ND	0.019	mg/Kg-dry	1	3/17/2014
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	3/17/2014
Methylene chloride	ND	0.0099	mg/Kg-dry	1	3/17/2014
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	3/17/2014
Styrene	ND	0.0049	mg/Kg-dry	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	3/17/2014
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	3/17/2014
Toluene	11	0.33	mg/Kg-dry	50	3/18/2014
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	3/17/2014
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	3/17/2014
Trichloroethene	ND	0.0049	mg/Kg-dry	1	3/17/2014
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	3/17/2014
Xylenes, Total	15	1	mg/Kg-dry	50	3/18/2014
Percent Moisture	D2974	4	Prep	Date: 3/17/2014	Analyst: VA
Percent Moisture	17.1	0.2	* wt%	1	3/18/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 18, 2014

ANALYTICAL RESULTS

Date Printed: March 18, 2014

Client: Weston Solutions

Client Sample ID: TB01-031514 Lab Order: 14030499 Collection Date: 3/15/2014

5-031714-000630-0001, Buckeye-Kankakee Spill Project: Matrix: Water

Lab ID: 14030499-010

Analyses	Result	RL Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	60B (SW5030B)	Prep	Date:	Analyst: PS
Acetone	ND	0.02	mg/L	1	3/17/2014
Benzene	ND	0.005	mg/L	1	3/17/2014
Bromodichloromethane	ND	0.005	mg/L	1	3/17/2014
Bromoform	ND	0.005	mg/L	1	3/17/2014
Bromomethane	ND	0.01	mg/L	1	3/17/2014
2-Butanone	ND	0.02	mg/L	1	3/17/2014
Carbon disulfide	ND	0.01	mg/L	1	3/17/2014
Carbon tetrachloride	ND	0.005	mg/L	1	3/17/2014
Chlorobenzene	ND	0.005	mg/L	1	3/17/2014
Chloroethane	ND	0.01	mg/L	1	3/17/2014
Chloroform	ND	0.005	mg/L	1	3/17/2014
Chloromethane	ND	0.01	mg/L	1	3/17/2014
Dibromochloromethane	ND	0.005	mg/L	1	3/17/2014
1,1-Dichloroethane	ND	0.005	mg/L	1	3/17/2014
1,2-Dichloroethane	ND	0.005	mg/L	1	3/17/2014
1,1-Dichloroethene	ND	0.005	mg/L	1	3/17/2014
cis-1,2-Dichloroethene	ND	0.005	mg/L	1	3/17/2014
trans-1,2-Dichloroethene	ND	0.005	mg/L	1	3/17/2014
1,2-Dichloropropane	ND	0.005	mg/L	1	3/17/2014
cis-1,3-Dichloropropene	ND	0.001	mg/L	1	3/17/2014
trans-1,3-Dichloropropene	ND	0.001	mg/L	1	3/17/2014
Ethylbenzene	ND	0.005	mg/L	1	3/17/2014
2-Hexanone	ND	0.02	mg/L	1	3/17/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/17/2014
Methylene chloride	ND	0.005	mg/L	1	3/17/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/17/2014
Styrene	ND	0.005	mg/L	1	3/17/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/17/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/17/2014
Toluene	ND	0.005	mg/L	1	3/17/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/17/2014
Trichloroethene	ND	0.005	mg/L	1	3/17/2014
Vinyl chloride	ND	0.002	mg/L	1	3/17/2014
Xylenes, Total	ND	0.015	mg/L	1	3/17/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 1 of 2

USEPA

DateShipped: CarrierName; AirbillNo:

CHAIN OF CUSTODY RECORD

Buckeye-Kankakee Spill

Contact Name: Lisa Gracyk Contact Phone: 312-424-3339

No: 5-031714-000630-0001

Lab: STAT Analysis Corporation Lab Phone: 312-733-0551 Cooler #: 001

Lab #	Sample #	Location	Analyses	Matrix	Collected	Numb	Numb Container	Preservativ	MS/MSD
		The second secon				Cont		ø	
colA	ColA 1873 Springview Ln	Kankakee, IL	Volatiles (VOAs)	Residential Well Water	3/16/2014	က	3 40 ml VOA	HCL/Wet ice	
gloo	00 B 1873 Springview Ln	Kankakee, IL	PAHs	Residential Well Water	3/16/2014	-	1 liter amber	Wet ice	
824	©2.4 1882 Springview Ln	Kankakee, IL	Volatiles (VOAs)	Residential Well Water	3/16/2014	င	3 40 ml VOA	HCL/Wet ice	
5026	වර2 දු 1882 Springview Ln	Kankakee, IL	PAHs	Residential Well Water	3/16/2014	-	1 liter amber	Wet ice	
SSA.	acs A 1908 Springview Ln	Kankakee, IL	Volatiles (VOAs)	Residential Well Water	3/16/2014	က	40 ml VOA	HCL/Wet ice	
65.00	ලට දුලි 1908 Springview Ln	Kankakee, IL	PAHs	Residential Well Water	3/16/2014	-	1 liter amber	Wetice	
\$\frac{4}{2}	ರಿತಿ ಭ್ಯಕ್ತ 2000B Springview Dr.	Kankakee, IL	Volatiles (VOAs)	Residential Well Water	3/16/2014	က	40 ml VOA	HCL/Wet ice	
Shoo	2000B Springview Dr.	Kankakee, IL	PAHs	Residential Well Water	3/16/2014	_	1 liter amber	Wet ice	
eusp	BKG-EX3-031614(0-2)	Kankakee, IL	Volatiles (VOAs)	Soil	3/16/2014	4	40 ml vial	Methanol/Bis ulfate/Wet Ice	, A
005R	೦೦5 Қ BKG-EX3-031614(0-2)	Kankakee, IL	PAHs	Soil	3/16/2014	-	4 oz Jar	Wet ice	\$ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

SAMPLES TRANSFERRED FROM	CHAIN OF CUSTODY#	65rocot/
	ecial Instructions: 24-hour TAT	55to2ot1

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinguished By	Date	Received by	Date	Time
						the commendate manufacture and the contract of					2
							No. of the last of				
			Maria Carallel and					10 to			
The state of the first of the state of the s	-										
			.,								
									11111111111111111111111111111111111111		, , , , , , , , , , , , , , , , , , ,
		Common Co								-	
			V Made and management					,			
	-										

Page 2 of 2

USEPA

DateShipped: CarrierName: AirbillNo:

CHAIN OF CUSTODY RECORD

Buckeye-Kankakee Spill Contact Name: Lisa Gracyk Contact Phone: 312-424-3339

No: 5-031714-000630-0001

Cooler #: 001

Lab: STAT Analysis Corporation Lab Phone: 312-733-0551

Lab #	Sample #	Location	Analyses	Matrix	Collected	Numb Cont	Numb Container Cont	Preservativ e	MS/MSD
D 06 A	BKG-SB01-031514(0-2)	Kankakee, IL	Volatiles (VOAs)	Soil	3/15/2014	4	40 ml vial	Methanol/Bis ulfate/Wet Ice	
S 0 S	ථ ු (, j S BKG-SB01-031514(0-2)	Kankakee, IL	PAHs	Soil	3/15/2014	-	4 oz Jar	Wet ice	
4200	BKG-SB02-031514(0-2)	Kankakee, IL	Volatiles (VOAs)	Soil	3/15/2014	4	40 ml vial	Methanol/Bis ulfate/Wet Ice	
か 7万つ	○○7 //> BKG-SB02-031514(0-2)	Kankakee, IL	PAHs	Soil	3/15/2014	+	4 oz Jar	Wetice	
Dog A	BKG-SB07-031614(0-2)	Kankakee, IL	Volatiles (VOAs)	Soil	3/16/2014	4	40 ml vial	Methanol/Bis ulfate/Wet Ice	
200g	Dosys BKG-SB07-031614(0-2)	Kankakee, IL	PAHs	Soil	3/16/2014	-	4 oz Jar	Wet ice	
H500	BKG-SB07-031614(2.0-2.3)	Kankakee, IL	Volatiles (VOAs)	Soil	3/16/2014	4	40 ml vial	Methanol/Bis ulfate/Wet	
S 70	උද (දි BKG-SB07-031614(2.0-2.3)	Kankakee, IL	PAHs	Soil	3/16/2014	-	4 oz Jar	Wet ice	
Poio	Oioth TB01-031514	Kankakee, IL	Volatiles (VOAs)	Wafer	3/15/2014	_	200		
	DKG-EX3-031614(0-2) 1	-2) [TPH DRUGERO	Seci	3/1P/16	_	402 104	# # #	
	04.6-5801-031514(0-2)	5			3/18/14) _		
STREET, SERVICE & LAND	8/65/242-03/5/4(0-2)				VI/721/6	-			,
444	DKG-5877-031614(20-23)	3/ 🔻	7	 	7/91/E		>	 	
	i	S			8	AMPLES 1	SAMPLES TRANSFERRED FROM	D FROM	
Special	Special Instructions: 24-hour TAT				ō	HAIN OF (CHAIN OF CUSTODY #	ちちせ ^い しっカ/	56
		The second secon		0.000			7) ^ ^]	_ _

Items/Reason	Refinduished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date Time	Time
1 COCKY	Brever 47/2	1/1/A	N	317 LE 1152	15.20 15.00	Andrew Communication of the Co					
coler		10 CC CC CC CC CC CC CC		S1.91 HILLITE	16.15						
			1					The state of the s	THE PART OF THE PA		
										and the second s	

Sample Receipt Checklist

Client Name WESTON CHICAGO			Date and Tim	ne Received:	3/17/2014 4:15:00 PN
Work Order Number 14030499			Received by:	DO	3 Í
Checklist completed by Signature	3/1 Date	7/14	Reviewed by:	Initials	3/18/14 Date
Matrix:	Carrier name	STAT Analysis			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?		Yes	No 🗌	Not Present 🗸	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗸	No 🗌		
Chain of custody signed when relinquished and receive	ved?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels/container	rs?	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗸	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗸	No 🗌		
Container or Temp Blank temperature in compliance?	•	Yes 🗹	No 🗌	Temperatu	re 2.7 °C
Water - VOA vials have zero headspace? No	VOA vials subn	nitted	Yes 🗹	No 🗌	
Water - Samples pH checked?		Yes	No 🗌	Checked by:	
Water - Samples properly preserved?		Yes	No 🗌	pH Adjusted?	·
Any No response must be detailed in the comments s	ection below.				
Comments:					
Client / Person Date	contacted:		Conta	cted by:	
Response:					

CLIENT: Weston Solutions

Work Order: 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Test No: SW5035/8260B Matrix: S

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	BR4FBZ	BZMED8	DBFM	DCA12D4		
VBLK031714-2	92.3	98.0	91.3	100		
VLCS031714-2	97.7	98.4	105	104		
VLCSD031714-2	96.6	99.8	102	103		
14030499-005A	95.3	97.1	112	114		
14030499-006A	94.7	99.8	103	117		
14030499-007A	94.6	99.4	104	114		
14030499-008A	87.1	112	95.8	107		
14030499-009A	96.1	105	77.3	81.2		

_	Acronym		Surrogate	QC Limits
	BR4FBZ BZMED8 DBFM DCA12D4	=	4-Bromofluorobenzene Toluene-d8 Dibromofluoromethane 1,2-Dichloroethane-d4	44-114 62-122 74-150 78-160

^{*} Surrogate recovery outside acceptance limit

Analytical Run Summary

 Run ID:
 VOA-2_140317A (R97236)
 Analyst:
 PS

 Printed:
 18-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyzed
2627511	BFB031714-2	TUNE	BFB	R97236	1	H:\VOC-2\031714\0317	03/17/2014 17:59
2627513	VSTD100	CCV	VOC ENCORE+	R97236	1	H:\VOC-2\031714\0317	03/17/2014 18:22
2627514	VBLK031714-2	MBLK	VOC_ENCORE+	R97236	1	H:\VOC-2\031714\0317	03/17/2014 19:37
2627515	VLCS031714-2	LCS	VOC_ENCORE+	R97236	1	H:\VOC-2\031714\0317	03/17/2014 20:12
2627516	VLCSD031714-2	LCSD	VOC_ENCORE+	R97236	1	H:\VOC-2\031714\0317	03/17/2014 20:48
2627517	14030499-005A	SAMP	VOC_5035	75154	1	H:\VOC-2\031714\0317	03/17/2014 21:23
2627518	14030499-006A	SAMP	VOC_5035	75154	1	H:\VOC-2\031714\0317	03/17/2014 21:58
2627519	14030499-007A	SAMP	VOC_5035	75154	1	H:\VOC-2\031714\0317	03/17/2014 22:33
2627520	14030499-008A	SAMP	VOC_5035	75154	1	H:\VOC-2\031714\0317	03/17/2014 23:14
2627522	14030499-009A	SAMP	VOC_5035	75154	1	H:\VOC-2\031714\0317	03/17/2014 23:49
2627523	14030360-022A	SAMP	VOC_5035	75074	500	H:\VOC-2\031714\0317	03/18/2014 0:24
2627524	14030360-023A	SAMP	VOC_5035	75074	5000	H:\VOC-2\031714\0317	03/18/2014 0:59
2627525	14030360-024A	SAMP	VOC_5035	75074	500	H:\VOC-2\031714\0317	03/18/2014 1:34
2627526	14030360-026A	SAMP	VOC_5035	75074	1000	H:\VOC-2\031714\0317	03/18/2014 2:09
2627527	14030360-027A	SAMP	VOC_5035	75074	5000	H:\VOC-2\031714\0317	03/18/2014 2:44
2627528	14030360-027A	SAMP	VOC_5035	75074	50	H:\VOC-2\031714\0317	03/18/2014 3:19
2627529	14030360-028A	SAMP	VOC_5035	75074	50	H:\VOC-2\031714\0317	03/18/2014 4:28
2627530	14030360-029A	SAMP	VOC_5035	75074	50	H:\VOC-2\031714\0317	03/18/2014 5:38

Work Order: 14030499

ANALYTICAL QC SUMMARY REPORT

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

BatchID: R97236

Sample ID: VBLK031714-2	SampType: MBLK	TestCo	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140317	A
Client ID: ZZZZZ	Batch ID: R97236	Test	No: SW5035 /8	260		Analysis Da	te: 3/17/2 0)14	SeqNo: 262	27514	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	0.0050									
1,1,2,2-Tetrachloroethane	ND	0.0050									
1,1,2-Trichloroethane	ND	0.0050									
1,1-Dichloroethane	ND	0.0050									
1,1-Dichloroethene	ND	0.0050									
1,2-Dichloroethane	ND	0.0050									
1,2-Dichloropropane	ND	0.0050									
2-Butanone	ND	0.075									
2-Hexanone	ND	0.020									
4-Methyl-2-pentanone	ND	0.020									
Acetone	ND	0.075									
Benzene	ND	0.0050									
Bromodichloromethane	ND	0.0050									
Bromoform	ND	0.0050									
Bromomethane	ND	0.010									
Carbon disulfide	ND	0.050									
Carbon tetrachloride	ND	0.0050									
Chlorobenzene	ND	0.0050									
Chloroethane	ND	0.010									
Chloroform	ND	0.0050									
Chloromethane	ND	0.010									
cis-1,2-Dichloroethene	ND	0.0050									
cis-1,3-Dichloropropene	ND	0.0020									
Dibromochloromethane	ND	0.0050									
Ethylbenzene	ND	0.0050									
Methyl tert-butyl ether	ND	0.0050									
Methylene chloride	0.00095	0.010									J
Styrene	ND	0.0050									
Tetrachloroethene	0.00253	0.0050									J
Toluene	ND	0.0050									
trans-1,2-Dichloroethene	ND	0.0050									

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030499

ANALYTICAL QC SUMMARY REPORT

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

BatchID: R97236

Sample ID: VBLK031714-2 Client ID: ZZZZZ	SampType: MBLK Batch ID: R97236		de: VOC_ENC	COR Units: mg/Kg		Prep Da		014	Run ID: VO SeqNo: 262	_	A
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropene	ND	0.0020									
Trichloroethene	ND	0.0050									
Vinyl chloride	ND	0.0050									
Xylenes, Total	ND	0.015									

Sample ID: VLCS031714-2	SampType: LCS	TestCod	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140317	4
Client ID: ZZZZZ	Batch ID: R97236	Test	No: SW5035 /8	260		Analysis Da	te: 3/17/20	14	SeqNo: 262	27515	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.05473	0.0050	0.05	0	109	70	130	0	0		
1,1,2,2-Tetrachloroethane	0.05743	0.0050	0.05	0	115	70	130	0	0		
1,1,2-Trichloroethane	0.05694	0.0050	0.05	0	114	70	130	0	0		
1,1-Dichloroethane	0.05398	0.0050	0.05	0	108	70	130	0	0		
1,1-Dichloroethene	0.04568	0.0050	0.05	0	91.4	70	130	0	0		
1,2-Dichloroethane	0.0523	0.0050	0.05	0	105	70	130	0	0		
1,2-Dichloropropane	0.05357	0.0050	0.05	0	107	70	130	0	0		
2-Butanone	0.09596	0.075	0.1	0	96	70	130	0	0		
2-Hexanone	0.1023	0.020	0.1	0	102	70	130	0	0		
4-Methyl-2-pentanone	0.1023	0.020	0.1	0	102	70	130	0	0		
Acetone	0.1249	0.075	0.1	0	125	50	150	0	0		
Benzene	0.0538	0.0050	0.05	0	108	70	130	0	0		
Bromodichloromethane	0.05396	0.0050	0.05	0	108	70	130	0	0		
Bromoform	0.05753	0.0050	0.05	0	115	70	130	0	0		
Bromomethane	0.03278	0.010	0.05	0	65.6	70	130	0	0		S
Carbon disulfide	0.1259	0.050	0.1	0	126	70	130	0	0		
Carbon tetrachloride	0.05307	0.0050	0.05	0	106	70	130	0	0		
Chlorobenzene	0.05688	0.0050	0.05	0	114	70	130	0	0		
Chloroethane	0.05825	0.010	0.05	0	116	70	130	0	0		
Chloroform	0.05451	0.0050	0.05	0	109	70	130	0	0		
Chloromethane	0.04277	0.010	0.05	0	85.5	70	130	0	0		
cis-1,2-Dichloroethene	0.05476	0.0050	0.05	0	110	70	130	0	0		

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97236

Sample ID: VLCS031714-2	SampType: LCS	TestCod	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140317	A
Client ID: ZZZZZ	Batch ID: R97236	Test	No: SW5035 /8	3260		Analysis Da	te: 3/17/20	14	SeqNo: 262	27515	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	0.05256	0.0020	0.05	0	105	70	130	0	0		
Dibromochloromethane	0.05704	0.0050	0.05	0	114	70	130	0	0		
Ethylbenzene	0.05918	0.0050	0.05	0	118	70	130	0	0		
Methyl tert-butyl ether	0.0528	0.0050	0.05	0	106	70	130	0	0		
Methylene chloride	0.0477	0.010	0.05	0.00095	93.5	70	130	0	0		
Styrene	0.05957	0.0050	0.05	0	119	70	130	0	0		
Tetrachloroethene	0.06119	0.0050	0.05	0.00253	117	70	130	0	0		
Toluene	0.05473	0.0050	0.05	0	109	70	130	0	0		
trans-1,2-Dichloroethene	0.05304	0.0050	0.05	0	106	70	130	0	0		
trans-1,3-Dichloropropene	0.06034	0.0020	0.05	0	121	70	130	0	0		
Trichloroethene	0.0526	0.0050	0.05	0	105	70	130	0	0		
Vinyl chloride	0.05018	0.0050	0.05	0	100	70	130	0	0		
Xylenes, Total	0.1703	0.015	0.15	0	114	70	130	0	0		
Sample ID: VLCSD031714-2	SampType: LCSD	TestCo	de: VOC_ENC	OR Units: mg/Kg	_	Prep Da	te:		Run ID: VO	A-2_140317	A
Client ID: 77777	Batch ID: B97236	TeetN	No: SW5035/8	260		Analysis Da	te: 3/17/20	1/1	SeaNo: 262	7516	

Sample ID: VLCSD031714-2	SampType: LCSD	TestCo	de: VOC_ENC	COR Units: mg/Kg		Prep Da	ite:		Run ID: VO	A-2_140317	Α
Client ID: ZZZZZ	Batch ID: R97236	Testl	No: SW5035 /8	3260		Analysis Da	ite: 3/17/20)14	SeqNo: 26 2	27516	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.05126	0.0050	0.05	0	103	70	130	0.05473	6.55	20	
1,1,2,2-Tetrachloroethane	0.05587	0.0050	0.05	0	112	70	130	0.05743	2.75	20	
1,1,2-Trichloroethane	0.05519	0.0050	0.05	0	110	70	130	0.05694	3.12	20	
1,1-Dichloroethane	0.05276	0.0050	0.05	0	106	70	130	0.05398	2.29	20	
1,1-Dichloroethene	0.04489	0.0050	0.05	0	89.8	70	130	0.04568	1.74	20	
1,2-Dichloroethane	0.0501	0.0050	0.05	0	100	70	130	0.0523	4.30	20	
1,2-Dichloropropane	0.05354	0.0050	0.05	0	107	70	130	0.05357	0.0560	20	
2-Butanone	0.1021	0.075	0.1	0	102	70	130	0.09596	6.21	20	
2-Hexanone	0.1029	0.020	0.1	0	103	70	130	0.1023	0.585	20	
4-Methyl-2-pentanone	0.1077	0.020	0.1	0	108	70	130	0.1023	5.17	20	
Acetone	0.1226	0.075	0.1	0	123	50	150	0.1249	1.83	20	
Benzene	0.05282	0.0050	0.05	0	106	70	130	0.0538	1.84	20	
Bromodichloromethane	0.05367	0.0050	0.05	0	107	70	130	0.05396	0.539	20	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Project:

Qualifiers:

Work Order: 14030499

14030499 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97236

Sample ID: VLCSD031714-2	SampType: LCSD	TestCo	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140317	A
Client ID: ZZZZZ	Batch ID: R97236	Test	No: SW5035 /8	260		Analysis Da	te: 3/17/20	14	SeqNo: 262	27516	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	0.05746	0.0050	0.05	0	115	70	130	0.05753	0.122	20	
Bromomethane	0.0321	0.010	0.05	0	64.2	70	130	0.03278	2.10	20	S
Carbon disulfide	0.1223	0.050	0.1	0	122	70	130	0.1259	2.92	20	
Carbon tetrachloride	0.0537	0.0050	0.05	0	107	70	130	0.05307	1.18	20	
Chlorobenzene	0.05359	0.0050	0.05	0	107	70	130	0.05688	5.96	20	
Chloroethane	0.05489	0.010	0.05	0	110	70	130	0.05825	5.94	20	
Chloroform	0.05341	0.0050	0.05	0	107	70	130	0.05451	2.04	20	
Chloromethane	0.04429	0.010	0.05	0	88.6	70	130	0.04277	3.49	20	
cis-1,2-Dichloroethene	0.0537	0.0050	0.05	0	107	70	130	0.05476	1.95	20	
cis-1,3-Dichloropropene	0.05139	0.0020	0.05	0	103	70	130	0.05256	2.25	20	
Dibromochloromethane	0.05672	0.0050	0.05	0	113	70	130	0.05704	0.563	20	
Ethylbenzene	0.05706	0.0050	0.05	0	114	70	130	0.05918	3.65	20	
Methyl tert-butyl ether	0.0531	0.0050	0.05	0	106	70	130	0.0528	0.567	20	
Methylene chloride	0.0481	0.010	0.05	0.00095	94.3	70	130	0.0477	0.835	20	
Styrene	0.05778	0.0050	0.05	0	116	70	130	0.05957	3.05	20	
Tetrachloroethene	0.058	0.0050	0.05	0.00253	111	70	130	0.06119	5.35	20	
Toluene	0.05319	0.0050	0.05	0	106	70	130	0.05473	2.85	20	
trans-1,2-Dichloroethene	0.05115	0.0050	0.05	0	102	70	130	0.05304	3.63	20	
trans-1,3-Dichloropropene	0.05799	0.0020	0.05	0	116	70	130	0.06034	3.97	20	
Trichloroethene	0.05221	0.0050	0.05	0	104	70	130	0.0526	0.744	20	
Vinyl chloride	0.04987	0.0050	0.05	0	99.7	70	130	0.05018	0.620	20	
Xylenes, Total	0.164	0.015	0.15	0	109	70	130	0.1703	3.75	20	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

CLIENT: Weston Solutions

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Test No: SW5035/8260B Matrix: S

QC SUMMARY REPORT
SURROGATE RECOVERIES

Sample ID	BR4FBZ	BZMED8	DBFM	DCA12D4	
VBLK031814-2	96.1	98.7	96.4	97.9	
VLCS031814r-2	95.6	101	102	98.5	
VLCSD031814-2	91.4	95.4	101	96.7	
14030499-009A:50	104	99.6	95.5	100	
14030499-008A:1000	91.8	102	98.5	101	
14030499-008A:50	97.3	105	96.3	95.3	

Acronym		Surrogate	QC Limits
Acronym BR4FBZ BZMED8 DBFM DCA12D4	= = =	4-Bromofluorobenzene Toluene-d8 Dibromofluoromethane 1,2-Dichloroethane-d4	63-110 85-110 83-119 84-129

^{*} Surrogate recovery outside acceptance limit

Analytical Run Summary

 Run ID:
 VOA-2_140318A (R97249)
 Analyst:
 PS

 Printed:
 18-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyzed
							_
2627856	BFB031814-2	TUNE	BFB	R97249	1	H:\VOC-2\031814\0318	03/18/2014 7:39
2627857	VSTD100	CCV	VOC_ENCORE+	R97249	1	H:\VOC-2\031814\0318	03/18/2014 7:59
2627858	VBLK031814-2	MBLK	VOC_ENCORE+	R97249	1	H:\VOC-2\031814\0318	03/18/2014 8:36
2627859	VLCS031814r-2	LCS	VOC_ENCORE+	R97249	1	H:\VOC-2\031814\0318	03/18/2014 9:47
2627860	VLCSD031814-2	LCSD	VOC_ENCORE+	R97249	1	H:\VOC-2\031814\0318	03/18/2014 10:24
2627862	14030499-009A	SAMP	VOC_5035	75166	50	H:\VOC-2\031814\0318	03/18/2014 11:09
2627863	14030499-008A	SAMP	VOC_5035	75166	1000	H:\VOC-2\031814\0318	03/18/2014 11:45
2627864	14030499-008A	SAMP	VOC_5035	75166	50	H:\VOC-2\031814\0318	03/18/2014 12:20
2627868	14030396-002A	SAMP	BTEX_ENCORE	73901	1	H:\VOC-2\031814\0318	03/18/2014 12:55

Work Order: 14030499

Project:

Qualifiers:

ANALYTICAL QC SUMMARY REPORT 5-031714-000630-0001, Buckeye-Kankakee Spill

BatchID:	R97249	

Sample ID: VBLK031814-2	SampType: MBLK	TestCor	TestCode: VOC_ENCOR Units: mg/Kg			Prep Da	te:		Run ID: VO	A-2_140318	A	
Client ID: ZZZZZ	Batch ID: R97249	TestNo: SW5035/8260				Analysis Date: 3/18/2014				SeqNo: 2627858		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	ND	0.0050										
Ethylbenzene	ND	0.0050										
Toluene	0.00059	0.0050									J	
Xylenes, Total	ND	0.015										
Sample ID: VLCS031814r-2	SampType: LCS	TestCor	de: VOC_ENC	COR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140318	Α	

Sample ID: VLCS031814r-2	SampType: LCS	TestCo	TestCode: VOC_ENCOR Units: mg/Kg		Prep Date:				Run ID: VO	A-2_140318	A	
Client ID: ZZZZZ	Batch ID: R97249	TestN	TestNo: SW5035/8260			Analysis Date: 3/18/2014				SeqNo: 2627859		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	0.04339	0.0050	0.05	0	86.8	70	130	0	0			
Ethylbenzene	0.0452	0.0050	0.05	0	90.4	70	130	0	0			
Toluene	0.04529	0.0050	0.05	0.00059	89.4	70	130	0	0			
Xylenes, Total	0.132	0.015	0.15	0	88	70	130	0	0			

Sample ID: VLCSD031814-2	SampType: LCSD	e: LCSD TestCode: VOC_ENCOR Units: mg/Kg		Prep Date:				Run ID: VO	A-2_140318	A	
Client ID: ZZZZZ	Batch ID: R97249	TestNo: SW5035 /8 260			Analysis Date: 3/18/2014				SeqNo: 2627860		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.04271	0.0050	0.05	0	85.4	70	130	0.04339	1.58	20	
Ethylbenzene	0.04566	0.0050	0.05	0	91.3	70	130	0.0452	1.01	20	
Toluene	0.04411	0.0050	0.05	0.00059	87	70	130	0.04529	2.64	20	
Xylenes, Total											

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

CLIENT: Weston Solutions

Work Order: 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

Test No: SW8260B Matrix: W

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	BR4FBZ	BZMED8	DBFM	DCA12D4	
VBLK031714-7	96.7	100	105	100	
VLCS031714-7	99.5	102	108	100	
VLCSD031714-7	99.1	100	104	101	
14030499-010A	98.0	98.4	103	99.7	
14030499-001A	97.5	99.5	105	98.2	
14030499-002A	98.3	100	103	100	
14030499-003A	95.2	101	107	108	
14030499-004A	94.1	98.8	105	105	

Acronym		Surrogate	QC Limits
BR4FBZ BZMED8 DBFM DCA12D4	= = =	4-Bromofluorobenzene Toluene-d8 Dibromofluoromethane 1,2-Dichloroethane-d4	86-115 88-110 86-118 80-120

^{*} Surrogate recovery outside acceptance limit

Analytical Run Summary

 Run ID:
 VOA-7_140317A (R97230)
 Analyst:
 PS

 Printed:
 18-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyzed
2627334	BFB031714-7	TUNE	BFB_624	R97230	1	03171401.D	03/17/2014 11:26
2627335	VSTD100	CCV	VOC_W+	R97230	1	03171403.D	03/17/2014 13:09
2627336	VBLK031714-7	MBLK	VOC_W+	R97230	1	03171405.D	03/17/2014 14:18
2627337	VLCS031714-7	LCS	VOC_W+	R97230	1	03171406.D	03/17/2014 14:53
2627338	VLCSD031714-7	LCSD	VOC_W+	R97230	1	03171407.D	03/17/2014 15:27
2627344	14030499-010A	SAMP	VOC_W	R97230	1	03171408.D	03/17/2014 17:41
2627345	14030499-001A	SAMP	VOC_W	R97230	1	03171409.D	03/17/2014 18:15
2627346	14030499-002A	SAMP	VOC_W	R97230	1	03171410.D	03/17/2014 18:50
2627347	14030499-003A	SAMP	VOC_W	R97230	1	03171411.D	03/17/2014 19:24
2627348	14030499-004A	SAMP	VOC W	R97230	1	03171412.D	03/17/2014 19:59

Work Order:

14030499

ANALYTICAL QC SUMMARY REPORT

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

BatchID: R97230

Sample ID: VBLK031714-7	SampType: MBLK	TestCod	le: VOC_W+	Units: mg/L		Prep Da	te:		Run ID: VO	A-7_140317A	\
Client ID: ZZZZZ	Batch ID: R97230	TestN	lo: SW8260B			Analysis Da	ite: 3/17/20	14	SeqNo: 262	27336	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	0.0050									
1,1,2,2-Tetrachloroethane	ND	0.0050									
1,1,2-Trichloroethane	ND	0.0050									
1,1-Dichloroethane	ND	0.0050									
1,1-Dichloroethene	ND	0.0050									
1,2-Dichloroethane	ND	0.0050									
1,2-Dichloropropane	ND	0.0050									
2-Butanone	ND	0.020									
2-Hexanone	ND	0.020									
4-Methyl-2-pentanone	ND	0.020									
Acetone	ND	0.020									
Benzene	ND	0.0050									
Bromodichloromethane	ND	0.0050									
Bromoform	ND	0.0050									
Bromomethane	ND	0.010									
Carbon disulfide	ND	0.010									
Carbon tetrachloride	ND	0.0050									
Chlorobenzene	ND	0.0050									
Chloroethane	ND	0.010									
Chloroform	ND	0.0050									
Chloromethane	ND	0.010									
cis-1,2-Dichloroethene	ND	0.0050									
cis-1,3-Dichloropropene	ND	0.0010									
Dibromochloromethane	ND	0.0050									
Ethylbenzene	ND	0.0050									
Methyl tert-butyl ether	ND	0.0050									
Methylene chloride	ND	0.0050									
Styrene	ND	0.0050									
Tetrachloroethene	ND	0.0050									
Toluene	ND	0.0050									
trans-1,2-Dichloroethene	ND	0.0050									

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97230

Sample ID: VBLK031714-7 Client ID: ZZZZZ	SampType: MBLK Batch ID: R97230	TestCode: VOC_W+ TestNo: SW8260B		Units: mg/L	Prep Date: Analysis Date: 3/17/2014			Run ID: VOA-7_140317A SeqNo: 2627336			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropene Trichloroethene	ND ND	0.0010 0.0050									
Vinyl chloride Xylenes, Total	ND ND	0.0020 0.015									

Sample ID: VLCS031714-7	SampType: LCS	TestCod	de: VOC_W+	Units: mg/L		Prep Da	te:	Run ID: VOA-7_140317A			
Client ID: ZZZZZ	Batch ID: R97230	TestN	lo: SW8260B			Analysis Da	ite: 3/17/20	14	SeqNo: 262	7337	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.0203	0.0050	0.02	0	102	70	130	0	0		
1,1,2,2-Tetrachloroethane	0.01975	0.0050	0.02	0	98.8	70	130	0	0		
1,1,2-Trichloroethane	0.01978	0.0050	0.02	0	98.9	70	130	0	0		
1,1-Dichloroethane	0.02217	0.0050	0.02	0	111	70	130	0	0		
1,1-Dichloroethene	0.01855	0.0050	0.02	0	92.8	70	130	0	0		
1,2-Dichloroethane	0.02004	0.0050	0.02	0	100	70	130	0	0		
1,2-Dichloropropane	0.02095	0.0050	0.02	0	105	70	130	0	0		
2-Butanone	0.04505	0.020	0.04	0	113	70	130	0	0		
2-Hexanone	0.0372	0.020	0.04	0	93	70	130	0	0		
4-Methyl-2-pentanone	0.04163	0.020	0.04	0	104	70	130	0	0		
Acetone	0.04808	0.020	0.04	0	120	50	150	0	0		
Benzene	0.02137	0.0050	0.02	0	107	70	130	0	0		
Bromodichloromethane	0.02112	0.0050	0.02	0	106	70	130	0	0		
Bromoform	0.02206	0.0050	0.02	0	110	70	130	0	0		
Bromomethane	0.02152	0.010	0.02	0	108	70	130	0	0		
Carbon disulfide	0.05092	0.010	0.04	0	127	70	130	0	0		
Carbon tetrachloride	0.01987	0.0050	0.02	0	99.4	70	130	0	0		
Chlorobenzene	0.02053	0.0050	0.02	0	103	70	130	0	0		
Chloroethane	0.02259	0.010	0.02	0	113	70	130	0	0		
Chloroform	0.02217	0.0050	0.02	0	111	70	130	0	0		
Chloromethane	0.01845	0.010	0.02	0	92.2	70	130	0	0		
cis-1,2-Dichloroethene	0.0222	0.0050	0.02	0	111	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97230

Sample ID: VLCS031714-7	SampType: LCS	TestCod	de: VOC_W+	Units: mg/L	Prep Date:				Run ID: VOA-7_140317A		
Client ID: ZZZZZ	Batch ID: R97230	TestN	lo: SW8260B		Analysis Date: 3/17/2014			14	SeqNo: 262	27337	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	0.0202	0.0010	0.02	0	101	70	130	0	0		
Dibromochloromethane	0.02129	0.0050	0.02	0	106	70	130	0	0		
Ethylbenzene	0.02152	0.0050	0.02	0	108	70	130	0	0		
Methyl tert-butyl ether	0.02118	0.0050	0.02	0	106	50	150	0	0		
Methylene chloride	0.02151	0.0050	0.02	0	108	70	130	0	0		
Styrene	0.02206	0.0050	0.02	0	110	70	130	0	0		
Tetrachloroethene	0.02114	0.0050	0.02	0	106	70	130	0	0		
Toluene	0.02107	0.0050	0.02	0	105	70	130	0	0		
trans-1,2-Dichloroethene	0.02135	0.0050	0.02	0	107	70	130	0	0		
trans-1,3-Dichloropropene	0.02008	0.0010	0.02	0	100	70	130	0	0		
Trichloroethene	0.02014	0.0050	0.02	0	101	70	130	0	0		
Vinyl chloride	0.02079	0.0020	0.02	0	104	70	130	0	0		
Xylenes, Total	0.06189	0.015	0.06	0	103	70	130	0	0		
Sample ID: VLCSD031714-7	SampType: LCSD	TestCod	de: VOC_W+	Units: mg/L		Prep Da	te:		Run ID: VO	A-7_140317A	l
Sample ID: VLCSD031714-7 Client ID: ZZZZZ	SampType: LCSD Batch ID: R97230		de: VOC_W+ No: SW8260B	Units: mg/L		•	te: ate: 3/17/20	14	Run ID: VO SeqNo: 262		1
·				Units: mg/L SPK Ref Val	%REC	Analysis Da	ite: 3/17/20	14 RPD Ref Val			Qual
Client ID: ZZZZZ	Batch ID: R97230	TestN	lo: SW8260B			Analysis Da	ite: 3/17/20		SeqNo: 262	27338	
Client ID: ZZZZZZ	Batch ID: R97230 Result	TestN PQL	No: SW8260B SPK value	SPK Ref Val	%REC	Analysis Da	ite: 3/17/20 HighLimit	RPD Ref Val	SeqNo: 262 %RPD	27338 RPDLimit	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane	Batch ID: R97230 Result 0.01996	TestN PQL 0.0050	SPK value 0.02	SPK Ref Val	%REC 99.8	Analysis Da	HighLimit	RPD Ref Val 0.0203	SeqNo: 262 %RPD 1.69	27338 RPDLimit 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	Batch ID: R97230 Result 0.01996 0.02062	PQL 0.0050 0.0050	SPK value 0.02 0.02	SPK Ref Val 0 0	%REC 99.8 103	Analysis Da LowLimit 70 70	HighLimit 130 130	RPD Ref Val 0.0203 0.01975	SeqNo: 262 %RPD 1.69 4.31	27338 RPDLimit 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Result 0.01996 0.02062 0.01957	PQL 0.0050 0.0050 0.0050	SPK value 0.02 0.02 0.02	SPK Ref Val 0 0 0	%REC 99.8 103 97.8	Analysis Da LowLimit 70 70 70	HighLimit 130 130 130	RPD Ref Val 0.0203 0.01975 0.01978	SeqNo: 262 %RPD 1.69 4.31 1.07	27338 RPDLimit 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	Result 0.01996 0.02062 0.01957 0.02049	PQL 0.0050 0.0050 0.0050 0.0050	SPK value 0.02 0.02 0.02 0.02 0.02	SPK Ref Val 0 0 0 0	%REC 99.8 103 97.8 102	Analysis Da LowLimit 70 70 70 70	HighLimit 130 130 130 130	0.0203 0.01975 0.01978 0.02217	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88	27338 RPDLimit 20 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	Batch ID: R97230 Result 0.01996 0.02062 0.01957 0.02049 0.01662	PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	SPK value 0.02 0.02 0.02 0.02 0.02 0.02 0.02	SPK Ref Val 0 0 0 0 0 0	%REC 99.8 103 97.8 102 83.1	Analysis Da LowLimit 70 70 70 70 70	HighLimit 130 130 130 130 130 130	RPD Ref Val 0.0203 0.01975 0.01978 0.02217 0.01855	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88 11.0	27338 RPDLimit 20 20 20 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	Result 0.01996 0.02062 0.01957 0.02049 0.01662 0.01995	PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	SPK value 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	SPK Ref Val 0 0 0 0 0 0 0	%REC 99.8 103 97.8 102 83.1 99.8	Analysis Da LowLimit 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130	RPD Ref Val 0.0203 0.01975 0.01978 0.02217 0.01855 0.02004	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88 11.0 0.450	27338 RPDLimit 20 20 20 20 20 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	Result 0.01996 0.02062 0.01957 0.02049 0.01662 0.01995 0.02049	PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	SPK value 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 99.8 103 97.8 102 83.1 99.8 102	Analysis Da LowLimit 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130 130	RPD Ref Val 0.0203 0.01975 0.01978 0.02217 0.01855 0.02004 0.02095	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88 11.0 0.450 2.22	27338 RPDLimit 20 20 20 20 20 20 20 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Butanone	Result 0.01996 0.02062 0.01957 0.02049 0.01662 0.01995 0.02049 0.03847	PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	SPK value 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	SPK Ref Val 0 0 0 0 0 0 0 0 0 0	%REC 99.8 103 97.8 102 83.1 99.8 102 96.2	Analysis Da LowLimit 70 70 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130 130 13	0.0203 0.01975 0.01978 0.02217 0.01855 0.02004 0.02095 0.04505	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88 11.0 0.450 2.22 15.8	27338 RPDLimit 20 20 20 20 20 20 20 20 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Butanone 2-Hexanone	Result 0.01996 0.02062 0.01957 0.02049 0.01662 0.01995 0.02049 0.03847 0.03594	PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0020 0.020	SPK value 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 99.8 103 97.8 102 83.1 99.8 102 96.2 89.8	Analysis Da LowLimit 70 70 70 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130 130 13	0.0203 0.01975 0.01978 0.02217 0.01855 0.02004 0.02095 0.04505 0.0372	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88 11.0 0.450 2.22 15.8 3.45	27338 RPDLimit 20 20 20 20 20 20 20 20 20 20 20 20 20	
Client ID: ZZZZZ Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone	Result 0.01996 0.02062 0.01957 0.02049 0.01662 0.01995 0.02049 0.03847 0.03594 0.03852	PQL 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0020 0.020 0.020	SPK value 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 99.8 103 97.8 102 83.1 99.8 102 96.2 89.8 96.3	Analysis Da LowLimit 70 70 70 70 70 70 70 70 70 70 70 70 70	HighLimit 130 130 130 130 130 130 130 130 130 13	RPD Ref Val 0.0203 0.01975 0.01978 0.02217 0.01855 0.02004 0.02095 0.04505 0.0372 0.04163	SeqNo: 262 %RPD 1.69 4.31 1.07 7.88 11.0 0.450 2.22 15.8 3.45 7.76	27338 RPDLimit 20 20 20 20 20 20 20 20 20 20 20 20 20	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97230

Sample ID: VLCSD031714-7	SampType: LCSD	TestCoo	de: VOC_W+	Units: mg/L		Prep Da	te:		Run ID: VO	A-7_140317A	
Client ID: ZZZZZ	Batch ID: R97230	TestN	lo: SW8260B			Analysis Da	ite: 3/17/20	14	SeqNo: 262	7338	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	0.02077	0.0050	0.02	0	104	70	130	0.02206	6.02	20	
Bromomethane	0.01923	0.010	0.02	0	96.2	70	130	0.02152	11.2	20	
Carbon disulfide	0.04815	0.010	0.04	0	120	70	130	0.05092	5.59	20	
Carbon tetrachloride	0.02005	0.0050	0.02	0	100	70	130	0.01987	0.902	20	
Chlorobenzene	0.0197	0.0050	0.02	0	98.5	70	130	0.02053	4.13	20	
Chloroethane	0.02158	0.010	0.02	0	108	70	130	0.02259	4.57	20	
Chloroform	0.02107	0.0050	0.02	0	105	70	130	0.02217	5.09	20	
Chloromethane	0.01791	0.010	0.02	0	89.6	70	130	0.01845	2.97	20	
cis-1,2-Dichloroethene	0.02134	0.0050	0.02	0	107	70	130	0.0222	3.95	20	
cis-1,3-Dichloropropene	0.01924	0.0010	0.02	0	96.2	70	130	0.0202	4.87	20	
Dibromochloromethane	0.01978	0.0050	0.02	0	98.9	70	130	0.02129	7.35	20	
Ethylbenzene	0.02037	0.0050	0.02	0	102	70	130	0.02152	5.49	20	
Methyl tert-butyl ether	0.02024	0.0050	0.02	0	101	50	150	0.02118	4.54	20	
Methylene chloride	0.02026	0.0050	0.02	0	101	70	130	0.02151	5.99	20	
Styrene	0.021	0.0050	0.02	0	105	70	130	0.02206	4.92	20	
Tetrachloroethene	0.01995	0.0050	0.02	0	99.8	70	130	0.02114	5.79	20	
Toluene	0.0205	0.0050	0.02	0	103	70	130	0.02107	2.74	20	
trans-1,2-Dichloroethene	0.02044	0.0050	0.02	0	102	70	130	0.02135	4.36	20	
trans-1,3-Dichloropropene	0.01903	0.0010	0.02	0	95.2	70	130	0.02008	5.37	20	
Trichloroethene	0.02035	0.0050	0.02	0	102	70	130	0.02014	1.04	20	
Vinyl chloride	0.0188	0.0020	0.02	0	94	70	130	0.02079	10.1	20	
Xylenes, Total	0.05892	0.015	0.06	0	98.2	70	130	0.06189	4.92	20	

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

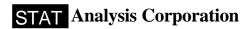
B - Analyte detected in the associated Method Blank

E - Value above quantitation range

CLIENT: Weston Solutions

Work Order: 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill


Test No: SW8270C Matrix: S

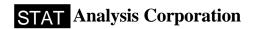
QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	CLPH2D4	DCBZ12D4	NO2BZD5	PH246BR	PH2F	PHD5	PHEN2F	PHEND14
MB-75151-SVOC	80.6	86.0	88.0	101	78.3	83.5	86.5	86.7
LCS-75151-SVOC	77.6	80.1	81.2	98.1	74.4	78.9	82.7	80.2
14030499-005B	68.9	71.4	75.7	92.6	66.3	70.5	74.7	80.2
14030499-006B	63.9	65.7	69.1	90.5	61.5	67.4	70.7	78.2
14030499-007B	80.9	85.9	86.5	102	78.2	83.0	86.2	86.8
14030499-008B	66.7	69.6	70.7	87.6	64.7	70.4	72.8	77.0
14030499-009B	64.0	65.6	69.7	89.8	62.0	67.7	73.8	75.3

Acronym		Surrogate	QC Limits
CLPH2D4	=	2-Chlorophenol-d4	20-130
DCBZ12D4	=	1,2-Dichlorobenzene-d4	20-130
NO2BZD5	=	Nitrobenzene-d5	23-120
PH246BR	=	2,4,6-Tribromophenol	19-122
PH2F	=	2-Fluorophenol	25-121
PHD5	=	Phenol-d5	24-113
PHEN2F	=	2-Fluorobiphenyl	30-115
PHEND14	=	4-Terphenyl-d14	18-137

^{*} Surrogate recovery outside acceptance limit

PREP BATCH REPORT


Prep Start Date: 3/17/2014 5:13:02 P

Prep End Date:

Prep Factor Units:

Prep Batch 75151 Prep Code: 3550_SVOC Technician: CMH mL/Kg

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75151-SVOC			0.03	0	0	1	33.333	3/17/2014	3/18/2014
LCS-75151-SVOC			0.03	0	0	1	33.333	3/17/2014	3/18/2014
14030499-005B	Soil		0.03018	0	0	1	33.135	3/17/2014	3/18/2014
14030499-006B	Soil		0.03019	0	0	1	33.124	3/17/2014	3/18/2014
14030499-007B	Soil		0.03017	0	0	1	33.146	3/17/2014	3/18/2014
14030499-008B	Soil		0.0302	0	0	1	33.113	3/17/2014	3/18/2014
14030499-009B	Soil		0.03005	0	0	1	33.278	3/17/2014	3/18/2014
14030415-007B	Soil		0.03032	0	0	1	32.982	3/18/2014	
14030415-008B	Soil		0.03028	0	0	1	33.025	3/18/2014	
14030415-009B	Soil		0.03008	0	0	1	33.245	3/18/2014	
14030415-010B	Soil		0.03031	0	0	1	32.992	3/18/2014	
14030415-011B	Soil		0.03019	0	0	1	33.124	3/18/2014	
14030415-012B	Soil		0.03019	0	0	1	33.124	3/18/2014	
14030415-013B	Soil		0.03026	0	0	1	33.047	3/18/2014	
14030415-014B	Soil		0.03009	0	0	1	33.234	3/18/2014	
14030415-015B	Soil		0.03009	0	0	1	33.234	3/18/2014	
14030423-002A	Solid		0.03048	0	0	1	32.808	3/18/2014	
14030475-002B	Soil		0.03003	0	0	1	33.300	3/18/2014	
14030492-001B	Soil		0.03008	0	0	1	33.245	3/18/2014	
14030492-004B	Soil		0.03004	0	0	1	33.289	3/18/2014	
14030492-006B	Soil		0.03019	0	0	1	33.124	3/18/2014	
14030431-002A	Soil		0.03015	0	0	1	33.167	3/17/2014	
14030431-002AMS	Soil		0.03017	0	0	1	33.146	3/17/2014	
14030431-002AMSD	Soil		0.03017	0	0	1	33.146	3/17/2014	
14030415-011BMS	Soil		0.03014	0	0	1	33.179	3/17/2014	

PREP BATCH REPORT

Prep Start Date: 3/17/2014 5:13:02 P

Prep End Date:

Prep Batch 75151 Prep Code: 3550_SVOC Technician: CMH

Prep Factor Units: mL / Kg

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
14030415-011BMSD	Soil		0.03014	0	0	1	33.179	3/17/2014	

Weston Solutions **CLIENT:**

Work Order:

Project:

14030499 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: 75151

Sample ID: MB-75151-SVOC	SampType: MBLK	TestCoo	le: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/17/20	14	Run ID: SV	OC-6_140318	ВА
Client ID: ZZZZZ	Batch ID: 75151	TestN	lo: SW8270C			Analysis Da	ite: 3/18/20	14	SeqNo: 262	27772	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.033									
Acenaphthylene	ND	0.033									
Anthracene	ND	0.033									
Benz(a)anthracene	ND	0.033									
Benzo(a)pyrene	ND	0.033									
Benzo(b)fluoranthene	ND	0.033									
Benzo(g,h,i)perylene	ND	0.033									
Benzo(k)fluoranthene	ND	0.033									
Chrysene	ND	0.033									
Dibenz(a,h)anthracene	ND	0.033									
Fluoranthene	ND	0.033									
Fluorene	ND	0.033									
Indeno(1,2,3-cd)pyrene	ND	0.033									
Naphthalene	ND	0.033									
		0.000									
Phenanthrene	ND	0.033									
•											
Phenanthrene	ND	0.033 0.033	le: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/17/20	114	Run ID: SV	OC-6_140318	BA
Phenanthrene Pyrene	ND ND	0.033 0.033 TestCoo	le: SVOC_SO	IL Units: mg/Kg		Prep Da Analysis Da			Run ID: SVe SeqNo: 262		ЗА
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC	ND ND SampType: LCS	0.033 0.033 TestCoo	_	IL Units: mg/Kg SPK Ref Val	%REC	Analysis Da	ite: 3/18/20				B A Qual
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ	ND ND SampType: LCS Batch ID: 75151	0.033 0.033 TestCoo	lo: SW8270C		%REC 82.2	Analysis Da	ite: 3/18/20	14	SeqNo: 262	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte	ND ND SampType: LCS Batch ID: 75151 Result	0.033 0.033 TestCoo TestN	lo: SW8270C SPK value	SPK Ref Val		Analysis Da	ite: 3/18/20	RPD Ref Val	SeqNo: 262 %RPD	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene	ND ND SampType: LCS Batch ID: 75151 Result	0.033 0.033 TestCoc TestN PQL 0.033	lo: SW8270C SPK value 1.667	SPK Ref Val	82.2	Analysis Da	HighLimit	RPD Ref Val	SeqNo: 262 %RPD	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene 4-Chloro-3-methylphenol	ND ND ND SampType: LCS Batch ID: 75151 Result 1.371 2.971	0.033 0.033 TestCoo TestN PQL 0.033 0.33	lo: SW8270C SPK value 1.667 3.333	SPK Ref Val 0 0	82.2 89.1	Analysis Da LowLimit 37 29	HighLimit 134 134	RPD Ref Val 0 0	SeqNo: 262 %RPD 0 0	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol	ND ND SampType: LCS Batch ID: 75151 Result 1.371 2.971 2.571	0.033 0.033 TestCoo TestN PQL 0.033 0.33 0.17	1.667 3.333 3.333	SPK Ref Val 0 0 0	82.2 89.1 77.1	Analysis Da LowLimit 37 29 29	HighLimit 134 134 105	RPD Ref Val 0 0 0	SeqNo: 262 %RPD 0 0 0 0	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene	ND ND SampType: LCS Batch ID: 75151 Result 1.371 2.971 2.571 1.302	0.033 0.033 TestCoo TestN PQL 0.033 0.33 0.17 0.17	1.667 SPK value 1.667 3.333 3.333 1.667	SPK Ref Val 0 0 0 0	82.2 89.1 77.1 78.1	Analysis Da LowLimit 37 29 29 29 26	HighLimit 134 105 111	RPD Ref Val 0 0 0 0 0	SeqNo: 262 %RPD 0 0 0 0 0	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene	ND ND ND SampType: LCS Batch ID: 75151 Result 1.371 2.971 2.571 1.302 1.513	0.033 0.033 TestCoo TestN PQL 0.033 0.33 0.17 0.17 0.033	1.667 3.333 3.333 1.667 1.667	SPK Ref Val 0 0 0 0 0 0	82.2 89.1 77.1 78.1 90.7	Analysis Da LowLimit 37 29 29 26 46	HighLimit 134 134 105 111 125	RPD Ref Val 0 0 0 0 0 0	SeqNo: 262 %RPD 0 0 0 0	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol	ND ND ND SampType: LCS Batch ID: 75151 Result 1.371 2.971 2.571 1.302 1.513 3.239	0.033 0.033 TestCoo TestN PQL 0.033 0.33 0.17 0.17 0.033 0.33	1.667 3.333 3.333 1.667 1.667 3.333	SPK Ref Val 0 0 0 0 0 0 0	82.2 89.1 77.1 78.1 90.7 97.2	Analysis Da LowLimit 37 29 29 26 46 12	HighLimit 134 134 105 111 125 146	RPD Ref Val 0 0 0 0 0 0 0 0	SeqNo: 262 %RPD 0 0 0 0 0	27799	
Phenanthrene Pyrene Sample ID: LCS-75151-SVOC Client ID: ZZZZZ Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine	ND ND ND SampType: LCS Batch ID: 75151 Result 1.371 2.971 2.571 1.302 1.513 3.239 1.286	0.033 0.033 TestCoo TestN PQL 0.033 0.33 0.17 0.17 0.033 0.33 0.33	1.667 3.333 3.333 1.667 1.667 3.333 1.667	SPK Ref Val 0 0 0 0 0 0 0 0 0	82.2 89.1 77.1 78.1 90.7 97.2 77.1	Analysis Da LowLimit 37 29 29 26 46 12 29	HighLimit 134 134 105 111 125 146 109	RPD Ref Val 0 0 0 0 0 0 0 0 0	SeqNo: 262 %RPD 0 0 0 0 0 0	27799	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

ANALYTICAL QC SUMMARY REPORT

Work Order: 14030499

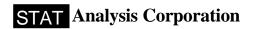
BatchID: 75151 5-031714-000630-0001, Buckeye-Kankakee Spill **Project:**

Sample ID: LCS-75151-SVOC	SampType: LCS	TestCoo	de: SVOC_SOI	L Units: mg/Kg		Prep Da	te: 3/17/20	14	Run ID: SV	OC-6_140318	BA
Client ID: ZZZZZ	Batch ID: 75151	TestN	lo: SW8270C			Analysis Da	ite: 3/18/20	14	SeqNo: 262	27799	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1.2.4-Trichlorobenzene	1.35	0.17	1.667	0	81	55	106	0	0		

CLIENT: Weston Solutions

Work Order: 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill


Test No: SW8270C-SIM Matrix: W

QC SUMMARY REPORT
SURROGATE RECOVERIES

Sample ID	DCBZ12D4	NO2BZD5	PHEN2F	PHEND14	
MB-75150-PNA	78.2	67.8	92.2	97.4	
LCS-75150-PNA	84.2	79.6	90.2	90.4	
LCSD-75150-PNA	100	92.0	100	101	
14030499-001B	88.2	82.2	95.4	102	
14030499-002B	94.0	87.4	101	100	
14030499-003B	89.0	84.6	101	101	
14030499-004B	93.0	87.2	98.0	101	

 Acronym		Surrogate	QC Limits
 Acronym DCBZ12D4 NO2BZD5 PHEN2F PHEND14	=	1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobiphenyl 4-Terphenyl-d14	16-110 35-114 43-116 33-141

^{*} Surrogate recovery outside acceptance limit

PREP BATCH REPORT

Prep Start Date: 3/17/2014 4:55:20 P

Prep End Date:

Prep Factor Units:

Prep Batch 75150 Prep Code: 3510_PNA Technician: PAA mL/L

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75150-PNA			1	0	0	1	1.000	3/17/2014	3/17/2014
LCS-75150-PNA			1	0	0	1	1.000	3/17/2014	3/17/2014
LCSD-75150-PNA			1	0	0	1	1.000	3/17/2014	3/17/2014
14030499-001B	Water		1	0	0	1	1.000	3/17/2014	3/17/2014
14030499-002B	Water		1	0	0	1	1.000	3/17/2014	3/17/2014
14030499-003B	Water		1	0	0	1	1.000	3/17/2014	3/17/2014
14030499-004B	Water		1	0	0	1	1.000	3/17/2014	3/17/2014

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: 75150

Sample ID: MB-75150-PNA	SampType: MBLK	TestCode: PNA_WATER Units: mg/L			Prep Date: 3/17/2014				Run ID: SVOC-7_140318A			
Client ID: ZZZZZ	Batch ID: 75150	TestNo: SW8270C-SI			Analysis Da	ite: 3/18/20	14	SeqNo: 2627779				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	ND	0.0010										
Acenaphthylene	ND	0.0010										
Anthracene	ND	0.0010										
Benz(a)anthracene	ND	0.00010										
Benzo(a)pyrene	ND	0.00010										
Benzo(b)fluoranthene	ND	0.00010										
Benzo(g,h,i)perylene	ND	0.0010										
Benzo(k)fluoranthene	ND	0.00010										
Chrysene	ND	0.00010										
Dibenz(a,h)anthracene	ND	0.00010										
Fluoranthene	ND	0.0010										
Fluorene	ND	0.0010										
Indeno(1,2,3-cd)pyrene	ND	0.00010										
Naphthalene	ND	0.0010										
Phenanthrene	ND	0.0010										
Pyrene	ND	0.0010										
Sample ID: LCS-75150-PNA	SampType: LCS	TestCoo	de: PNA WAT	ER Units: mg/L		Pren Da	te: 3/17/20	14	Run ID: SV	OC-7 140318	RΔ	

Sample ID: LCS-75150-PNA	SampType: LCS	TestCode: PNA_WATER Units: mg/L			Prep Date: 3/17/2014				Run ID: SVOC-7_140318A			
Client ID: ZZZZZ	Batch ID: 75150	TestNo: SW8270C-SI			Analysis Date: 3/18/2014				SeqNo: 2627780			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	0.00452	0.0010	0.005	0	90.4	50	125	0	0			
Acenaphthylene	0.00449	0.0010	0.005	0	89.8	50	125	0	0			
Anthracene	0.00455	0.0010	0.005	0	91	50	125	0	0			
Benz(a)anthracene	0.00452	0.00010	0.005	0	90.4	50	125	0	0			
Benzo(a)pyrene	0.0042	0.00010	0.005	0	84	50	125	0	0			
Benzo(b)fluoranthene	0.00456	0.00010	0.005	0	91.2	50	125	0	0			
Benzo(g,h,i)perylene	0.00446	0.0010	0.005	0	89.2	50	125	0	0			
Benzo(k)fluoranthene	0.00468	0.00010	0.005	0	93.6	50	125	0	0			
Chrysene	0.00479	0.00010	0.005	0	95.8	50	125	0	0			
Dibenz(a,h)anthracene	0.00432	0.00010	0.005	0	86.4	50	125	0	0			

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: 75150

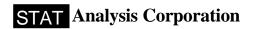
Sample ID: LCS-75150-PNA	SampType: LCS	TestCode: PNA_WATER Units: mg/L				Prep Da	te: 3/17/20	14	Run ID: SVOC-7_140318A		
Client ID: ZZZZZ	Batch ID: 75150	TestN	lo: SW8270C -	SI		Analysis Da	te: 3/18/20	14	SeqNo: 262	27780	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	0.00474	0.0010	0.005	0	94.8	50	125	0	0		
Fluorene	0.00457	0.0010	0.005	0	91.4	50	125	0	0		
Indeno(1,2,3-cd)pyrene	0.00452	0.00010	0.005	0	90.4	50	125	0	0		
Naphthalene	0.00424	0.0010	0.005	0	84.8	50	125	0	0		
Phenanthrene	0.0045	0.0010	0.005	0	90	50	125	0	0		
Pyrene	0.00469	0.0010	0.005	0	93.8	50	125	0	0		
Sample ID: LCSD-75150-PNA	SampType: LCSD	TestCod	de: PNA_WAT	ER Units: mg/L		Prep Dat	e: 3/17/20	14	Run ID: SV	OC-7_140318	3A
Client ID: ZZZZZ	Batch ID: 75150	TestN	No: SW8270C -	SI		Analysis Date: 3/18/2014			SeqNo: 2627809		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00481	0.0010	0.005	0	96.2	50	125	0.00452	6.22	25	
Acenaphthylene	0.00496	0.0010	0.005	0	99.2	50	125	0.00449	9.95	25	
Anthracene	0.00487	0.0010	0.005	0	97.4	50	125	0.00455	6.79	25	
Benz(a)anthracene	0.00486	0.00010	0.005	0	97.2	50	125	0.00452	7.25	25	
Benzo(a)pyrene	0.0044	0.00010	0.005	0	88	50	125	0.0042	4.65	25	
Benzo(b)fluoranthene	0.00487	0.00010	0.005	0	97.4	50	125	0.00456	6.57	25	
Benzo(g,h,i)perylene	0.00479	0.0010	0.005	0	95.8	50	125	0.00446	7.14	25	
Benzo(k)fluoranthene	0.00488	0.00010	0.005	0	97.6	50	125	0.00468	4.18	25	
Chrysene	0.00519	0.00010	0.005	0	104	50	125	0.00479	8.02	25	
Dibenz(a,h)anthracene	0.00456	0.00010	0.005	0	91.2	50	125	0.00432	5.41	25	
Fluoranthene	0.00508	0.0010	0.005	0	102	50	125	0.00474	6.92	25	
Fluorene	0.00483	0.0010	0.005	0	96.6	50	125	0.00457	5.53	25	
Indeno(1,2,3-cd)pyrene	0.00497	0.00010	0.005	0	99.4	50	125	0.00452	9.48	25	
Naphthalene	0.00467	0.0010	0.005	0	93.4	50	125	0.00424	9.65	25	
Phenanthrene	0.00496	0.0010	0.005	0	99.2	50	125	0.0045	9.73	25	
Pyrene	0.00509	0.0010	0.005	0	102	50	125	0.00469	8.18	25	

Qualifiers: ND - Not l

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter


S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

PREP BATCH REPORT

Prep Start Date: 3/17/2014 5:40:44 P

Prep End Date:

Prep Factor Units:

Prep Batch 75152 Prep Code: 3580_TPH Technician: MDM mL/Kg

Sample ID	Matrix	pH San	npAmt	Sol Added	Sol Recov	,	Fin Vol	factor	PrepStart	PrepEnd
MB-75152-TPH			0.005	0	()	5	1000.000	3/17/2014	3/17/2014
LCS-75152-TPH			0.005	0	C)	5	1000.000	3/17/2014	3/17/2014
14030492-010B	Soil		0.00518	0	C)	5	965.251	3/17/2014	3/17/2014
14030499-005B	Soil		0.00533	0	()	5	938.086	3/17/2014	3/17/2014
14030499-006B	Soil		0.00522	0	()	5	957.854	3/17/2014	3/17/2014
14030499-007B	Soil		0.00552	0	()	5	905.797	3/17/2014	3/17/2014
14030499-008B	Soil		0.00533	0	()	5	938.086	3/17/2014	3/17/2014
14030499-009B	Soil		0.00559	0	C)	5	894.454	3/17/2014	3/17/2014
14030499-006BMS	Soil		0.00522	0	C)	5	957.854	3/17/2014	3/17/2014
14030499-006BMSD	Soil	(0.00523	0	()	5	956.023	3/17/2014	3/17/2014

Work Order:

14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: 75152

Sample ID:	MB-75152-TPH	SampType: MBLK	TestCod	le: TPH_S	Units: mg/Kg		Prep Dat	e: 3/17/20	14	Run ID: GC	-FID-2_14031	7A
Client ID:	77777	Batch ID: 75152	TestN	lo: SW8015M			Analysis Dat	te: 3/17/20	14	SeqNo: 262	7762	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (GRO)		ND	20									
TPH (DRO)		16.6	20									J
TPH (ERO)		ND	20									*
Sample ID:	LCS-75152-TPH	SampType: LCS	TestCod	le: TPH_S	Units: mg/Kg		Prep Dat	e: 3/17/20 °	14	Run ID: GC	-FID-2_14031	7A
Client ID:	77777	Batch ID: 75152	TestN	lo: SW8015M			Analysis Dat	te: 3/17/20	14	SeqNo: 262	7763	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (GRO)		121.7	20	200	0	60.8	30	150	0	0		
TPH (DRO)		132.4	20	200	16.6	57.9	30	150	0	0		
TPH (ERO)		231.6	20	200	0	116	30	150	0	0		*
Sample ID:	14030499-006BMS	SampType: MS	TestCod	le: TPH_S	Units: mg/Kg-	dry	Prep Dat	e: 3/17/20	14	Run ID: GC	-FID-2_14031	7A
Client ID:	BKG-SB01-031514(0-	Batch ID: 75152	TestN	lo: SW8015M			Analysis Dat	te: 3/17/20	14	SeqNo: 262	7765	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
		Result 148.9	PQL 23	SPK value 229.2	SPK Ref Val	%REC 65	LowLimit 30	HighLimit 150	RPD Ref Val	%RPD 0	RPDLimit	Qual
TPH (GRO)								_			RPDLimit	Qual
TPH (GRO) TPH (DRO)		148.9	23	229.2	0	65	30	150	0	0	RPDLimit	Qual *
Analyte TPH (GRO) TPH (DRO) TPH (ERO) Sample ID:	14030499-006BMSD	148.9 164.7	23 23 23	229.2 229.2	0 6.903	65 68.8 133	30 30 30	150 150	0 0 0	0		*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID:	14030499-006BMSD BKG-SB01-031514(0-	148.9 164.7 305.4	23 23 23 TestCod	229.2 229.2 229.2	0 6.903 0 Units: mg/Kg-	65 68.8 133	30 30 30	150 150 150 e: 3/17/20	0 0 0	0 0 0	-FID-2_14031	*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: Client ID:		148.9 164.7 305.4 SampType: MSD	23 23 23 TestCod	229.2 229.2 229.2 de: TPH_S	0 6.903 0 Units: mg/Kg-	65 68.8 133	30 30 30 Prep Dat	150 150 150 150 e: 3/17/20	0 0 0	0 0 0 Run ID: GC	-FID-2_14031	*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID:		148.9 164.7 305.4 SampType: MSD Batch ID: 75152	23 23 23 TestCoo	229.2 229.2 229.2 de: TPH_S do: SW8015M	0 6.903 0 Units: mg/Kg-	65 68.8 133 dry	30 30 30 Prep Dat Analysis Dat	150 150 150 150 e: 3/17/20	0 0 0	0 0 0 Run ID: GC - SeqNo: 262	-FID-2_14031 7766	* 7A
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: Client ID: Analyte		148.9 164.7 305.4 SampType: MSD Batch ID: 75152 Result	23 23 23 TestCod TestN	229.2 229.2 229.2 de: TPH_S do: SW8015M SPK value	0 6.903 0 Units: mg/Kg-	65 68.8 133 dry	30 30 30 Prep Dat Analysis Dat LowLimit	150 150 150 150 e: 3/17/20 te: 3/17/20	0 0 0 14 14 RPD Ref Val	0 0 0 0 Run ID: GC SeqNo: 262 %RPD	-FID-2_14031 7766 RPDLimit	* 7A

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030499

Project: 5-031714-000630-0001, Buckeye-Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97238

Sample ID: PMMBK 3/17/14	SampType: MBLK	TestCode: PMOIST	Units: wt%	Prep Date: 3/17/2014	Run ID: BALANCE_140317D
Client ID: ZZZZZ	Batch ID: R97238	TestNo: D2974		Analysis Date: 3/18/2014	SeqNo: 2627549
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Percent Moisture	ND	0.200			*
Sample ID: PMLCS-S 3/17/14	SampType: LCS	TestCode: PMOIST	Units: wt%	Prep Date: 3/17/2014	Run ID: BALANCE_140317D
Client ID: ZZZZZ	Batch ID: R97238	TestNo: D2974		Analysis Date: 3/18/2014	SeqNo: 2627550
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Percent Moisture	4.89	0.200 5	0	97.8 80 120 0	0 *
Sample ID: PMLCS-W 3/17/14	SampType: LCS	TestCode: PMOIST	Units: wt%	Prep Date: 3/17/2014	Run ID: BALANCE_140317D
Client ID: ZZZZZ	Batch ID: R97238	TestNo: D2974		Analysis Date: 3/18/2014	SeqNo: 2627551
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Percent Moisture	99.84	0.200 99.8	0	100 80 120 0	0 *

March 19, 2014

Weston Solutions 20 North Wacker Drive Chicago, IL 60606

Telephone: (312) 424-3339 Fax: (312) 424-3330

Analytical Report for STAT Workorder: 14030549 Revision 0

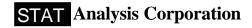
RE: Kankakee Gas ER

Dear Lisa Graczyk:

STAT Analysis received 1 sample for the referenced project on 3/18/2014 8:15:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.


Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Craig Chawla

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: March 19, 2014

Client: Weston Solutions

Project: Kankakee Gas ER

14030549

Lab Order:

Work Order Sample Summary

Lab Sample ID Client Sample ID Tag Number Collection Date Received

14030549-001A BKG-SWS-031714 3/17/2014 4:25:00 PM 3/18/2014 14030549-001B BKG-SWS-031714 3/17/2014 4:25:00 PM 3/18/2014

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-

Date Reported: March 19, 2014

ANALYTICAL RESULTS

Date Printed: March 19, 2014

Client: Weston Solutions Client Sample ID: BKG-SWS-031714 Lab Order: 14030549 **Collection Date**: 3/17/2014 4:25:00 PM Project: Kankakee Gas ER

Matrix: Soil Lab ID: 14030549-001

Analyses	Result	RL	Qualifier Uni	ts Di	F	Date Analyzed
Total Petroleum Hydrocarbons	SW80	15M (SW3	580A) F	Prep Date:	3/19/2014	Analyst: MDM
TPH (GRO)	ND	23	, mg/Kg-	•		3/19/2014
TPH (DRO)	ND	23	mg/Kg-	dry 1		3/19/2014
TPH (ERO)	ND	23	* mg/Kg-	dry 1		3/19/2014
Polynuclear Aromatic Hydrocarbons by GC/M	S SW82	70C (SW3	550B) F	rep Date	3/19/2014	Analyst: DM
Acenaphthene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Acenaphthylene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Anthracene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Benz(a)anthracene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Benzo(a)pyrene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Benzo(b)fluoranthene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Benzo(g,h,i)perylene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Benzo(k)fluoranthene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Chrysene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Dibenz(a,h)anthracene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Fluoranthene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Fluorene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Indeno(1,2,3-cd)pyrene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Naphthalene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Phenanthrene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Pyrene	ND	0.038	mg/Kg-	dry 1		3/19/2014
Volatile Organic Compounds by GC/MS	SW50	35/8260B	F	rep Date	3/18/2014	Analyst: ERP
Acetone	ND	5.3	mg/Kg-	dry 50		3/19/2014
Benzene	0.36	0.36	mg/Kg-	dry 50		3/19/2014
Bromodichloromethane	ND	0.36	mg/Kg-	dry 50		3/19/2014
Bromoform	ND	0.36	mg/Kg-	dry 50		3/19/2014
Bromomethane	ND	0.71	mg/Kg-	dry 50		3/19/2014
2-Butanone	ND	5.3	mg/Kg-	dry 50		3/19/2014
Carbon disulfide	ND	3.6	mg/Kg-	dry 50		3/19/2014
Carbon tetrachloride	ND	0.36	mg/Kg-	dry 50		3/19/2014
Chlorobenzene	ND	0.36	mg/Kg-	dry 50		3/19/2014
Chloroethane	ND	0.71	mg/Kg-	dry 50		3/19/2014
Chloroform	ND	0.36	mg/Kg-	dry 50		3/19/2014
Chloromethane	ND	0.71	mg/Kg-	dry 50		3/19/2014
Dibromochloromethane	ND	0.36	mg/Kg-	dry 50		3/19/2014
1,1-Dichloroethane	ND	0.36	mg/Kg-	dry 50		3/19/2014
1,2-Dichloroethane	ND	0.36	mg/Kg-	dry 50		3/19/2014
1,1-Dichloroethene	ND	0.36	mg/Kg-	dry 50		3/19/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: March 19, 2014

ANALYTICAL RESULTS

Date Printed: March 19, 2014

Client: Weston Solutions
Lab Order: 14030549
Project: Kankakee Gas ER

Project: Kankakee Gas ER **Lab ID:** 14030549-001

Client Sample ID: BKG-SWS-031714 Collection Date: 3/17/2014 4:25:00 PM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW503	35/8260B	Prep	Date: 3/18/2014	Analyst: ERP
cis-1,2-Dichloroethene	ND	0.36	mg/Kg-dry	50	3/19/2014
trans-1,2-Dichloroethene	ND	0.36	mg/Kg-dry	50	3/19/2014
1,2-Dichloropropane	ND	0.36	mg/Kg-dry	50	3/19/2014
cis-1,3-Dichloropropene	ND	0.14	mg/Kg-dry	50	3/19/2014
trans-1,3-Dichloropropene	ND	0.14	mg/Kg-dry	50	3/19/2014
Ethylbenzene	1.6	0.36	mg/Kg-dry	50	3/19/2014
2-Hexanone	ND	1.4	mg/Kg-dry	50	3/19/2014
4-Methyl-2-pentanone	ND	1.4	mg/Kg-dry	50	3/19/2014
Methylene chloride	ND	0.71	mg/Kg-dry	50	3/19/2014
Methyl tert-butyl ether	ND	0.36	mg/Kg-dry	50	3/19/2014
Styrene	ND	0.36	mg/Kg-dry	50	3/19/2014
1,1,2,2-Tetrachloroethane	ND	0.36	mg/Kg-dry	50	3/19/2014
Tetrachloroethene	ND	0.36	mg/Kg-dry	50	3/19/2014
Toluene	5	0.36	mg/Kg-dry	50	3/19/2014
1,1,1-Trichloroethane	ND	0.36	mg/Kg-dry	50	3/19/2014
1,1,2-Trichloroethane	ND	0.36	mg/Kg-dry	50	3/19/2014
Trichloroethene	ND	0.36	mg/Kg-dry	50	3/19/2014
Vinyl chloride	ND	0.36	mg/Kg-dry	50	3/19/2014
Xylenes, Total	9	1.1	mg/Kg-dry	50	3/19/2014
Percent Moisture	D2974		Prep	Date: 3/18/2014	Analyst: VA
Percent Moisture	13.2	0.2	* wt%	1	3/19/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

Turn Around: Results Needed: Lab No.: 0° 928 14030549 Received on Ice: Yes No 00 5 aboratory Work Order No.: Temperature: Page: Remarks Nº: 854805 B = HNO, C = NaOH G = Other $D = H_2SO_4$ E = HCl F = 5035/EnCorePreservation Code: A = None CHAIN OF CUSTODY RECORD Quote No.: P.O. No.: Comments: e-mail: lgraczyk@css-dynanac. <u>い</u>る Containers No. of Phone: 312-424-3339 Client Tracking No.: Date/Time: 3/p/14 Grab Date/Time: 3 Date/Time: Comp Date/Time: Matrix R 1625 Time Taken Fax: Right Company Ston Solutions, Inc Date Taken 17/1/K Client Sample Number/Description: Report To: Lisa Graczyk Project Location: Karkaker Project Name: Kankaler BKG-SWS-031714 Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Sampler(s): 😤 🧢 Project Number: QC Level:

STAT Analysis Corporation

Sample Receipt Checklist

Client Name WESTON CHICAGO		Date and Tim	e Received:	3/18/2014 8:15:00 PM
Work Order Number 14030549		Received by:	DO	1 1
Checklist completed by: Signature Date	18/14	Reviewed by:	A. Initials	OS/9/2014
Matrix: Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?	Yes	No 🗌	Not Present 🗸	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels/containers?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container or Temp Blank temperature in compliance?	Yes 🗸	No 🗌	Temperature	5.6 °C
Water - VOA vials have zero headspace? No VOA vials subm	itted	Yes	No 🗵	
Water - Samples pH checked?	Yes 🔳	No 🗐	Checked by:	
Water - Samples properly preserved?	Yes 🗵	No 🗏	pH Adjusted?	
Any No response must be detailed in the comments section below.				
Comments:				
Client / Person contacted: Response:		Contac	cted by:	

STAT Analysis Corporation

CLIENT: Weston Solutions

Work Order: 14030549

Project: Kankakee Gas ER

Test No: SW5035/8260B Matrix: S

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	BR4FBZ	BZMED8	DBFM	DCA12D4		
VBLK031814B-1	81.9	94.5	100	103		
VLCS031814B-1	97.8	108	116	101		
VLCSD031814B-1	96.4	107	110	103		
14030549-001A:50	87.4	102	96.9	98.6		

Acronym		Surrogate	QC Limits
BR4FBZ	=	4-Bromofluorobenzene	63-110
BZMED8	=	Toluene-d8	85-110
DBFM	=	Dibromofluoromethane	83-119
DCA12D4	=	1,2-Dichloroethane-d4	84-129

^{*} Surrogate recovery outside acceptance limit

Analytical Run Summary

 Run ID:
 VOA-1_140318B (R97262)
 Analyst:
 ERP

 Printed:
 19-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyzed
2628217	BFB031814B-1	TUNE	BFB	R97262	1	F:\VOC-1\031814B\031	03/18/2014 21:43
2628225	VSTD100R	CCV	VOC_ENCORE+	R97262	1	F:\VOC-1\031814B\031	03/18/2014 22:41
2628226	VBLK031814B-1	MBLK	VOC_ENCORE+	R97262	1	F:\VOC-1\031814B\031	03/18/2014 23:17
2628227	VLCS031814B-1	LCS	VOC_ENCORE+	R97262	1	F:\VOC-1\031814B\031	03/18/2014 23:53
2628228	VLCSD031814B-1	LCSD	VOC_ENCORE+	R97262	1	F:\VOC-1\031814B\031	03/19/2014 0:30
2628256	14030549-001A	SAMP	VOC_5035	75166	50	F:\VOC-1\031814B\031	03/19/2014 1:06
2628258	14030396-001A	SAMP	VOC_ENCORE	73901	1	F:\VOC-1\031814B\031	03/19/2014 1:43
2628259	14030396-011A	SAMP	VOC_ENCORE	73901	1	F:\VOC-1\031814B\031	03/19/2014 2:19
2628262	14030203-021A	SAMP	VOC_5035	75016	250	F:\VOC-1\031814B\031	03/19/2014 2:56
2628264	14030240-003A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 3:33
2628266	14030203-024A	SAMP	VOC_5035	75016	1	F:\VOC-1\031814B\031	03/19/2014 4:09
2628267	14030203-042A	SAMP	VOC_5035	75016	1	F:\VOC-1\031814B\031	03/19/2014 4:45
2628268	14030242-006A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 5:22
2628269	14030242-012A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 5:59
2628271	14030242-015A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 6:35
2628272	14030242-018A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 7:12
2628273	14030242-021A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 7:48
2628274	14030242-023A	SAMP	VOC_5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 8:24
2628276	14030242-024A	SAMP	VOC 5035	75154	1	F:\VOC-1\031814B\031	03/19/2014 9:01

Work Order: 14030549

ston Solutions
30549

ANALYTICAL QC SUMMARY REPORT

Project: Kankakee Gas ER BatchID: R97262

Sample ID: VBLK031814B-1	SampType: MBLK	TestCod	de: VOC_ENC	OR Units: mg/K	9	Prep Da	te:		Run ID: VO	A-1_140318E	3
Client ID: ZZZZZ	Batch ID: R97262	TestN	lo: SW5035/8	260		Analysis Da	ate: 3/18/20	14	SeqNo: 262	28226	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	0.0050									
1,1,2,2-Tetrachloroethane	ND	0.0050									
1,1,2-Trichloroethane	ND	0.0050									
1,1-Dichloroethane	ND	0.0050									
1,1-Dichloroethene	ND	0.0050									
1,2-Dichloroethane	ND	0.0050									
1,2-Dichloropropane	ND	0.0050									
2-Butanone	ND	0.075									
2-Hexanone	ND	0.020									
4-Methyl-2-pentanone	ND	0.020									
Acetone	ND	0.075									
Benzene	ND	0.0050									
Bromodichloromethane	ND	0.0050									
Bromoform	ND	0.0050									
Bromomethane	ND	0.010									
Carbon disulfide	ND	0.050									
Carbon tetrachloride	ND	0.0050									
Chlorobenzene	ND	0.0050									
Chloroethane	ND	0.010									
Chloroform	ND	0.0050									
Chloromethane	ND	0.010									
cis-1,2-Dichloroethene	ND	0.0050									
cis-1,3-Dichloropropene	ND	0.0020									
Dibromochloromethane	ND	0.0050									
Ethylbenzene	ND	0.0050									
Methyl tert-butyl ether	ND	0.0050									
Methylene chloride	0.00184	0.010									J
Styrene	ND	0.0050									
Tetrachloroethene	ND	0.0050									
Toluene	ND	0.0050									
trans-1,2-Dichloroethene	ND	0.0050									
1,2-DIGHOIDEHEHE	IND	0.0000									

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: R97262

Sample ID: VBLK031814B-1	SampType: MBLK	TestCode: VOC_ENCOR Units: mg/Kg			Prep Date:			Run ID: VO	3		
Client ID: ZZZZZ	Batch ID: R97262	TestNo: SW5035/8260		Analysis Date: 3/18/2014			14	SeqNo: 2628226			
Analyte	Result	PQL SPK value SPK Ref Val %		%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
trans-1,3-Dichloropropene	ND	0.0020									
Trichloroethene	ND	0.0050									
Vinyl chloride	ND	0.0050									
Xylenes, Total	ND	0.015									

Sample ID: VLCS031814B-1	SampType: LCS	TestCod	de: VOC_ENC	OR Units: mg/Kg		Prep Da	ite:		Run ID: VO	A-1_140318E	3
Client ID: ZZZZZ	Batch ID: R97262	TestN	No: SW5035/8	260		Analysis Da	ate: 3/18/20	14	SeqNo: 262	28227	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.05341	0.0050	0.05	0	107	70	130	0	0		
1,1,2,2-Tetrachloroethane	0.05333	0.0050	0.05	0	107	70	130	0	0		
1,1,2-Trichloroethane	0.05098	0.0050	0.05	0	102	70	130	0	0		
1,1-Dichloroethane	0.05803	0.0050	0.05	0	116	70	130	0	0		
1,1-Dichloroethene	0.04403	0.0050	0.05	0	88.1	70	130	0	0		
1,2-Dichloroethane	0.05855	0.0050	0.05	0	117	70	130	0	0		
1,2-Dichloropropane	0.05548	0.0050	0.05	0	111	70	130	0	0		
2-Butanone	0.1058	0.075	0.1	0	106	70	130	0	0		
2-Hexanone	0.1029	0.020	0.1	0	103	70	130	0	0		
4-Methyl-2-pentanone	0.1145	0.020	0.1	0	114	70	130	0	0		
Acetone	0.1542	0.075	0.1	0	154	50	150	0	0		S
Benzene	0.05185	0.0050	0.05	0	104	70	130	0	0		
Bromodichloromethane	0.0563	0.0050	0.05	0	113	70	130	0	0		
Bromoform	0.04702	0.0050	0.05	0	94	70	130	0	0		
Bromomethane	0.05056	0.010	0.05	0	101	70	130	0	0		
Carbon disulfide	0.1276	0.050	0.1	0	128	70	130	0	0		
Carbon tetrachloride	0.05003	0.0050	0.05	0	100	70	130	0	0		
Chlorobenzene	0.04702	0.0050	0.05	0	94	70	130	0	0		
Chloroethane	0.05139	0.010	0.05	0	103	70	130	0	0		
Chloroform	0.05824	0.0050	0.05	0	116	70	130	0	0		
Chloromethane	0.06993	0.010	0.05	0	140	70	130	0	0		S
cis-1,2-Dichloroethene	0.05471	0.0050	0.05	0	109	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: R97262

Sample ID: VLCS031814B-1 Client ID: ZZZZZ	SampType: LCS Batch ID: R97262		de: VOC_ENCO do: SW5035/826	0 0		Prep Date	te: .te: 3/18/20 1	14	Run ID: VO SeqNo: 262	A-1_140318E 28227	3
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	0.05623	0.0020	0.05	0	112	70	130	0	0		
Dibromochloromethane	0.05029	0.0050	0.05	0	101	70	130	0	0		
Ethylbenzene	0.05278	0.0050	0.05	0	106	70	130	0	0		
Methyl tert-butyl ether	0.0598	0.0050	0.05	0	120	70	130	0	0		
Methylene chloride	0.05405	0.010	0.05	0.00184	104	70	130	0	0		
Styrene	0.05451	0.0050	0.05	0	109	70	130	0	0		
Tetrachloroethene	0.04501	0.0050	0.05	0	90	70	130	0	0		
Toluene	0.05365	0.0050	0.05	0	107	70	130	0	0		
trans-1,2-Dichloroethene	0.05099	0.0050	0.05	0	102	70	130	0	0		
trans-1,3-Dichloropropene	0.05644	0.0020	0.05	0	113	70	130	0	0		
Trichloroethene	0.04902	0.0050	0.05	0	98	70	130	0	0		
Vinyl chloride	0.06788	0.0050	0.05	0	136	70	130	0	0		S
Xylenes, Total	0.1528	0.015	0.15	0	102	70	130	0	0		
Sample ID: VLCSD031814B-1	SampType: LCSD	TestCoo	de: VOC_ENCO	R Units: mg/Kg		Prep Dat	te:		Run ID: VO	A-1_140318E	3
Client ID: ZZZZZ	Batch ID: R97262	TestN	lo: SW5035/82 6	60		Analysis Da	ite: 3/19/20 1	14	SeqNo: 262	28228	

Sample ID: VLCSD031814B-1	SampType: LCSD	TestCod	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-1_140318B	3
Client ID: ZZZZZ	Batch ID: R97262	TestN	No: SW5035/8 2	260		Analysis Da	ite: 3/19/20	14	SeqNo: 262	28228	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.05076	0.0050	0.05	0	102	70	130	0.05341	5.09	20	
1,1,2,2-Tetrachloroethane	0.05281	0.0050	0.05	0	106	70	130	0.05333	0.980	20	
1,1,2-Trichloroethane	0.05105	0.0050	0.05	0	102	70	130	0.05098	0.137	20	
1,1-Dichloroethane	0.05832	0.0050	0.05	0	117	70	130	0.05803	0.498	20	
1,1-Dichloroethene	0.04626	0.0050	0.05	0	92.5	70	130	0.04403	4.94	20	
1,2-Dichloroethane	0.0571	0.0050	0.05	0	114	70	130	0.05855	2.51	20	
1,2-Dichloropropane	0.05533	0.0050	0.05	0	111	70	130	0.05548	0.271	20	
2-Butanone	0.1072	0.075	0.1	0	107	70	130	0.1058	1.32	20	
2-Hexanone	0.1048	0.020	0.1	0	105	70	130	0.1029	1.79	20	
4-Methyl-2-pentanone	0.1176	0.020	0.1	0	118	70	130	0.1145	2.71	20	
Acetone	0.1539	0.075	0.1	0	154	50	150	0.1542	0.195	20	S
Benzene	0.05134	0.0050	0.05	0	103	70	130	0.05185	0.988	20	
Bromodichloromethane	0.05641	0.0050	0.05	0	113	70	130	0.0563	0.195	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: R97262

Sample ID: VLCSD031814B-1	SampType: LCSD	TestCoo	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-1_140318B	
Client ID: ZZZZZ	Batch ID: R97262	TestN	lo: SW5035/8 2	260		Analysis Da	ite: 3/19/20	14	SeqNo: 262	8228	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	0.04706	0.0050	0.05	0	94.1	70	130	0.04702	0.0850	20	
Bromomethane	0.05752	0.010	0.05	0	115	70	130	0.05056	12.9	20	
Carbon disulfide	0.1306	0.050	0.1	0	131	70	130	0.1276	2.30	20	S
Carbon tetrachloride	0.05025	0.0050	0.05	0	101	70	130	0.05003	0.439	20	
Chlorobenzene	0.04614	0.0050	0.05	0	92.3	70	130	0.04702	1.89	20	
Chloroethane	0.06039	0.010	0.05	0	121	70	130	0.05139	16.1	20	
Chloroform	0.0584	0.0050	0.05	0	117	70	130	0.05824	0.274	20	
Chloromethane	0.07223	0.010	0.05	0	144	70	130	0.06993	3.24	20	S
cis-1,2-Dichloroethene	0.05422	0.0050	0.05	0	108	70	130	0.05471	0.900	20	
cis-1,3-Dichloropropene	0.05623	0.0020	0.05	0	112	70	130	0.05623	0	20	
Dibromochloromethane	0.05096	0.0050	0.05	0	102	70	130	0.05029	1.32	20	
Ethylbenzene	0.05185	0.0050	0.05	0	104	70	130	0.05278	1.78	20	
Methyl tert-butyl ether	0.06151	0.0050	0.05	0	123	70	130	0.0598	2.82	20	
Methylene chloride	0.05482	0.010	0.05	0.00184	106	70	130	0.05405	1.41	20	
Styrene	0.05364	0.0050	0.05	0	107	70	130	0.05451	1.61	20	
Tetrachloroethene	0.04324	0.0050	0.05	0	86.5	70	130	0.04501	4.01	20	
Toluene	0.05267	0.0050	0.05	0	105	70	130	0.05365	1.84	20	
trans-1,2-Dichloroethene	0.05231	0.0050	0.05	0	105	70	130	0.05099	2.56	20	
trans-1,3-Dichloropropene	0.05611	0.0020	0.05	0	112	70	130	0.05644	0.586	20	
Trichloroethene	0.04893	0.0050	0.05	0	97.9	70	130	0.04902	0.184	20	
Vinyl chloride	0.07142	0.0050	0.05	0	143	70	130	0.06788	5.08	20	S
Xylenes, Total	0.1503	0.015	0.15	0	100	70	130	0.1528	1.62	20	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

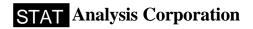
E - Value above quantitation range

STAT Analysis Corporation

CLIENT: Weston Solutions

Work Order: 14030549

Project: Kankakee Gas ER


Test No: SW8270C Matrix: S

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	CLPH2D4	DCBZ12D4	NO2BZD5	PH246BR	PH2F	PHD5	PHEN2F	PHEND14
14030549-001B	54.1	59.6	57.8	75.2	52.5	53.4	60.9	84.5
MB-75181-SVOC	70.3	79.7	74.2	88.7	68.4	67.6	77.1	87.4
LCS-75181-SVOC	58.9	64.6	63.0	78.5	56.6	59.3	69.2	80.5
14030492-008AMS	48.1	51.8	54.0	70.4	44.3	50.3	62.7	68.4
14030492-008AMSD	69.2	74.7	77.4	82.2	65.3	69.6	81.0	77.5

Acronym		Surrogate	QC Limits
CLPH2D4	=	2-Chlorophenol-d4	20-130
DCBZ12D4	=	1,2-Dichlorobenzene-d4	20-130
NO2BZD5	=	Nitrobenzene-d5	23-120
PH246BR	=	2,4,6-Tribromophenol	19-122
PH2F	=	2-Fluorophenol	25-121
PHD5	=	Phenol-d5	24-113
PHEN2F	=	2-Fluorobiphenyl	30-115
PHEND14	=	4-Terphenyl-d14	18-137

^{*} Surrogate recovery outside acceptance limit

PREP BATCH REPORT

Prep Start Date: 3/19/2014 9:48:32 A

Prep End Date:

Prep Factor Units:

Prep Batch 75181 Prep Code: 3550_SVOC Technician: ADM mL/Kg

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75181-SVOC			0.03	0	0	1	33.333	3/19/2014	3/19/2014
LCS-75181-SVOC			0.03	0	0	1	33.333	3/19/2014	3/19/2014
14030492-007A	Soil		0.03017	0	0	10	331.455	3/19/2014	3/19/2014
14030492-008A	Soil		0.03006	0	0	1	33.267	3/19/2014	3/19/2014
14030492-009B	Soil		0.03007	0	0	1	33.256	3/19/2014	3/19/2014
14030492-010B	Soil		0.0301	0	0	1	33.223	3/19/2014	3/19/2014
14030492-011A	Soil		0.03013	0	0	1	33.190	3/19/2014	3/19/2014
14030492-012A	Soil		0.03002	0	0	1	33.311	3/19/2014	3/19/2014
14030549-001B	Soil		0.03015	0	0	1	33.167	3/19/2014	3/19/2014
14030492-008AMS	Soil		0.03004	0	0	1	33.289	3/19/2014	3/19/2014
14030492-008AMSD	Soil		0.03004	0	0	1	33.289	3/19/2014	3/19/2014
14030552-001A	Soil		0.03019	0	0	1	33.124	3/19/2014	3/19/2014

Work Order:

Weston Solutions 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: 75181

Sample ID: MB-75181-SVOC	SampType: MBLK	TestCoo	le: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319	В
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Da	ite: 3/19/20	14	SeqNo: 262	8849	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.033									
Acenaphthylene	ND	0.033									
Anthracene	ND	0.033									
Benz(a)anthracene	ND	0.033									
Benzo(a)pyrene	ND	0.033									
Benzo(b)fluoranthene	ND	0.033									
Benzo(g,h,i)perylene	ND	0.033									
Benzo(k)fluoranthene	ND	0.033									
Chrysene	ND	0.033									
Dibenz(a,h)anthracene	ND	0.033									
Fluoranthene	ND	0.033									
Fluorene	ND	0.033									
ndeno(1,2,3-cd)pyrene	ND	0.033									
Naphthalene	ND	0.033									
Phenanthrene	ND	0.033									
Pyrene	ND	0.033									
Sample ID: LCS-75181-SVOC	SampType: LCS	TestCoo	le: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319	В
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Da	ite: 3/19/20	14	SeqNo: 262	8859	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Acenaphthene	1.302	0.033	1.667	0	78.1	37	134	0	0		
		0.33	3.333	0	69.2	29	134	0	0		
1-Chloro-3-methylphenol	2.306	0.55	0.000	·	00				_		
4-Chloro-3-methylphenol 2-Chlorophenol	2.306 1.925	0.33	3.333	0	57.8	29	105	0	0		

Qualifiers:

2,4-Dinitrotoluene

Pentachlorophenol

N-Nitrosodi-n-propylamine

4-Nitrophenol

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

1.264

2.711

1.059

2.459

0.033

0.33

0.033

0.067

1.667

3.333

1.667

3.333

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

0

0

0

0

75.8

81.3

63.5

73.8

46

12

29

10

125

146

109

192

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

0

0

0

0

E - Value above quantitation range

0

0

0

0

Work Order: 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: 75181

Sample ID: LCS-75181-SVOC	SampType: LCS	TestCod	de: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319	ЭВ
Client ID: ZZZZZ	Batch ID: 75181	Test	lo: SW8270C			Analysis Da	ite: 3/19/20	14	SeqNo: 262	28859	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	1.983	0.17	3.333	0	59.5	27	104	0	0		
Pyrene	1.404	0.033	1.667	0	84.2	42	148	0	0		
1,2,4-Trichlorobenzene	1.085	0.17	1.667	0	65.1	55	106	0	0		
Sample ID: 14030492-008AMS	SampType: MS	TestCod	de: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319)B
Client ID: ZZZZZ	Batch ID: 75181	Test!	lo: SW8270C			Analysis Da	ite: 3/19/20	14	SeqNo: 262	28888	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1.203	0.033	1.665	0	72.2	24	139	0	0		
4-Chloro-3-methylphenol	2.165	0.33	3.329	0	65	28	121	0	0		
2-Chlorophenol	1.64	0.17	3.329	0	49.3	21	102	0	0		
1,4-Dichlorobenzene	0.8652	0.17	1.665	0	52	27	95	0	0		
2,4-Dinitrotoluene	1.151	0.033	1.665	0	69.1	32	127	0	0		
4-Nitrophenol	2.374	0.33	3.329	0	71.3	10	156	0	0		
N-Nitrosodi-n-propylamine	0.9258	0.033	1.665	0	55.6	16	122	0	0		
Pentachlorophenol	2.042	0.067	3.329	0	61.4	10	204	0	0		
Phenol	1.694	0.17	3.329	0	50.9	20	103	0	0		
Pyrene	1.231	0.033	1.665	0	74	10	184	0	0		
1,2,4-Trichlorobenzene	0.9344	0.17	1.665	0	56.1	55	106	0	0		
Sample ID: 14030492-008AMSD	SampType: MSD	TestCod	de: SVOC_SO	IL Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319)B
Client ID: ZZZZZ	Batch ID: 75181	Test!	lo: SW8270C			Analysis Da	ite: 3/19/20	14	SeqNo: 262	28945	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1.447	0.033	1.665	0	86.9	24	139	1.203	18.4	57	
4-Chloro-3-methylphenol	2.619	0.33	3.329	0	78.7	28	121	2.165	19.0	88	
2-Chlorophenol	2.328	0.17	3.329	0	69.9	21	102	1.64	34.7	49	
1,4-Dichlorobenzene	1.244	0.17	1.665	0	74.7	27	95	0.8652	35.9	43	
2,4-Dinitrotoluene	1.321	0.033	1.665	0	79.3	32	127	1.151	13.7	37	
4-Nitrophenol	2.667	0.33	3.329	0	80.1	10	156	2.374	11.6	56	
N-Nitrosodi-n-propylamine	1.263	0.033	1.665	0	75.8	16	122	0.9258	30.8	47	
Qualifiers: ND Not Detect	ad at the Penorting Limit		0 0 11	a Pacovary outside acc	. 1	11 1.		2 Analyta datact			

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: 75181

Sample ID: 14030492-008AMSD	SampType: MSD	TestCod	de: SVOC_SO	L Units: mg/Kg		Prep Dat	te: 3/19/20	14	Run ID: SV	OC-5_140319	В
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Da	te: 3/19/20	14	SeqNo: 262	8945	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	2.343	0.067	3.329	0	70.4	10	204	2.042	13.7	47	
Phenol	2.312	0.17	3.329	0	69.5	20	103	1.694	30.8	66	
Pyrene	1.37	0.033	1.665	0	82.3	10	184	1.231	10.6	51	
1,2,4-Trichlorobenzene	1.318	0.17	1.665	0	79.2	55	106	0.9344	34.1	23	R

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

R - RPD outside accepted recovery limits

PREP BATCH REPORT

Prep Start Date: 3/19/2014 8:40:40 A

Prep End Date:

Prep Factor Units:

Prep Batch 75178 Prep Code: 3580_TPH Technician: PEM mL/Kg

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75178-TPH			0.005	0	0	5	1000.000	3/19/2014	3/19/2014
LCS-75178-TPH			0.005	0	0	5	1000.000	3/19/2014	3/19/2014
14030549-001B	Soil		0.00512	0	0	5	976.562	3/19/2014	3/19/2014
14030549-001BMS	Soil		0.00512	0	0	5	976.562	3/19/2014	3/19/2014
14030549-001BMSD	Soil		0.00513	0	0	5	974.659	3/19/2014	3/19/2014

Work Order: 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: 75178

Sample ID: MB-75178-TPH	SampType: MBLK	TestCod	e: TPH_S	Units: mg/Kg		Prep Dat	te: 3/19/20	14	Run ID: GC	-FID-2_14031	19A
Client ID: ZZZZZ	Batch ID: 75178	TestN	o: SW8015M			Analysis Da	te: 3/19/20	14	SeqNo: 262	8559	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (GRO)	ND	20									
TPH (DRO)	6.478	20									J
TPH (ERO)	ND	20									*
Sample ID: LCS-75178-TPH	SampType: LCS	TestCod	e: TPH_S	Units: mg/Kg		Prep Dat	te: 3/19/20	14	Run ID: GC	-FID-2_14031	19A
Client ID: ZZZZZ	Batch ID: 75178	TestN	o: SW8015M			Analysis Da	te: 3/19/20	14	SeqNo: 262	8560	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (GRO)	93.6	20	200	0	46.8	30	150	0	0		
TPH (DRO)	103.8	20	200	6.478	48.7	30	150	0	0		
TPH (ERO)	172.8	20	200	0	86.4	30	150	0	0		*
Sample ID: 14030549-001BMS	SampType: MS	TestCod	e: TPH_S	Units: mg/Kg-	dry	Prep Dat	te: 3/19/20	14	Run ID: GC	-FID-2_14031	19A
Client ID: BKG-SWS-031714	Batch ID: 75178	TestN	o: SW8015M			Analysis Da	te: 3/19/20	14	SeqNo: 262	8674	
			ODK	00K D ()/ I			∐iahl imit	RPD Ref Val	%RPD	DDDI :it	Qual
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	підпіліпі	THE THE VAI	701 NI D	RPDLimit	Quai
Analyte TPH (GRO)	Result 120.2	PQL 23	SPK value 225	5.091	%REC 51.1	LowLimit 30	150	0	0	RPDLIMIT	Quai
TPH (GRO)										RPULIMIT	Quai
TPH (GRO) TPH (DRO)	120.2	23	225	5.091	51.1	30	150	0	0	RPDLIMIT	*
•	120.2 132.8	23 23 23	225 225	5.091 8.493	51.1 55.2 103	30 30 30	150 150	0 0 0	0		*
TPH (GRO) TPH (DRO) TPH (ERO)	120.2 132.8 232.5	23 23 23 TestCod	225 225 225	5.091 8.493 0	51.1 55.2 103	30 30 30	150 150 150 te: 3/19/20	0 0 0	0 0 0	-FID-2_14031	*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: 14030549-001BMSD	120.2 132.8 232.5 SampType: MSD	23 23 23 TestCod	225 225 225 ee: TPH_S	5.091 8.493 0	51.1 55.2 103	30 30 30 Prep Dat	150 150 150 150 te: 3/19/20	0 0 0	0 0 0 Run ID: GC	-FID-2_14031	*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: 14030549-001BMSD Client ID: BKG-SWS-031714 Analyte	120.2 132.8 232.5 SampType: MSD Batch ID: 75178	23 23 23 TestCod TestN	225 225 225 225 e: TPH_S o: SW8015M	5.091 8.493 0 Units: mg/Kg-	51.1 55.2 103	30 30 30 30 Prep Dat Analysis Da	150 150 150 150 te: 3/19/20	0 0 0	0 0 0 Run ID: GC - SeqNo: 262	-FID-2_14031 8689	* 19A
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: 14030549-001BMSD Client ID: BKG-SWS-031714	120.2 132.8 232.5 SampType: MSD Batch ID: 75178	23 23 23 TestCod TestN	225 225 225 e: TPH_S o: SW8015M SPK value	5.091 8.493 0 Units: mg/Kg-	51.1 55.2 103 dry	30 30 30 Prep Dat Analysis Da LowLimit	150 150 150 150 te: 3/19/20 HighLimit	0 0 0 14 14 RPD Ref Val	0 0 0 Run ID: GC : SeqNo: 262 %RPD	-FID-2_14031 8689 RPDLimit	* 19A

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030549

Project: Kankakee Gas ER

ANALYTICAL QC SUMMARY REPORT

BatchID: R97268

Sample ID: PMMBK 3/18/14	SampType: MBLK	TestCode: PMOIST	Units: wt%	Prep Date: 3/18/20	14	Run ID: BALANCE	140318B
Client ID: ZZZZZ	Batch ID: R97268	TestNo: D2974		Analysis Date: 3/19/20	14	SeqNo: 2628355	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDL	imit Qual
Percent Moisture	ND	0.200					*
Sample ID: PMLCS-S 3/18/14	SampType: LCS	TestCode: PMOIST	Units: wt%	Prep Date: 3/18/20	14	Run ID: BALANCE	_140318B
Client ID: ZZZZZ	Batch ID: R97268	TestNo: D2974		Analysis Date: 3/19/20	14	SeqNo: 2628356	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDL	imit Qual
Percent Moisture	4.55	0.200 5	0	91 80 120	0	0	*
Sample ID: PMLCS-W 3/18/14	SampType: LCS	TestCode: PMOIST	Units: wt%	Prep Date: 3/18/20	14	Run ID: BALANCE	_140318B
Client ID: ZZZZZ	Batch ID: R97268	TestNo: D2974		Analysis Date: 3/19/20	14	SeqNo: 2628357	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDL	imit Qual
Percent Moisture	99.8	0.200 99.8	0	100 80 120	0	0	*

March 20, 2014

Weston Solutions 20 North Wacker Drive Chicago, IL 60606

Telephone: (312) 424-3339 Fax: (312) 424-3330

Analytical Report for STAT Workorder: 14030589 Revision 0

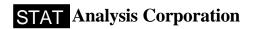
RE: 20405.012.005.2306.00, Buckeye Kankakee Spill

Dear Lisa Graczyk:

STAT Analysis received 4 samples for the referenced project on 3/19/2014 2:30:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.


Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Craig Chawla

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: March 20, 2014

Client: Weston Solutions

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill Work Order Sample Summary

Lab Order: 14030589

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14030589-001A	Pipex 2-031914		3/19/2014 2:00:00 PM	3/19/2014
14030589-001B	Pipex 2-031914		3/19/2014 2:00:00 PM	3/19/2014
14030589-002A	Pipex 7-031914		3/19/2014 2:25:00 PM	3/19/2014
14030589-002B	Pipex 7-031914		3/19/2014 2:25:00 PM	3/19/2014
14030589-003A	Pipex 10-031914		3/19/2014 2:40:00 PM	3/19/2014
14030589-003B	Pipex 10-031914		3/19/2014 2:40:00 PM	3/19/2014
14030589-004A	BKG-SW6-031714		3/17/2014 4:30:00 PM	3/19/2014
14030589-004B	BKG-SW6-031714		3/17/2014 4:30:00 PM	3/19/2014

Report Date: March 20, 2014 **ANALYTICAL RESULTS**

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: Pipex 2-031914

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill **Collection Date**: 3/19/2014 2:00:00 PM

Lab ID: 14030589-001A Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/19/2014	Analyst: PS
Acetone	ND	0.061	mg/Kg-dry	1	3/20/2014
Benzene	ND	0.0041	mg/Kg-dry	1	3/20/2014
Bromodichloromethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
Bromoform	ND	0.0041	mg/Kg-dry	1	3/20/2014
Bromomethane	ND	0.0081	mg/Kg-dry	1	3/20/2014
2-Butanone	ND	0.061	mg/Kg-dry	1	3/20/2014
Carbon disulfide	ND	0.041	mg/Kg-dry	1	3/20/2014
Carbon tetrachloride	ND	0.0041	mg/Kg-dry	1	3/20/2014
Chlorobenzene	ND	0.0041	mg/Kg-dry	1	3/20/2014
Chloroethane	ND	0.0081	mg/Kg-dry	1	3/20/2014
Chloroform	ND	0.0041	mg/Kg-dry	1	3/20/2014
Chloromethane	ND	0.0081	mg/Kg-dry	1	3/20/2014
Dibromochloromethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
1,1-Dichloroethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
1,2-Dichloroethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
1,1-Dichloroethene	ND	0.0041	mg/Kg-dry	1	3/20/2014
cis-1,2-Dichloroethene	ND	0.0041	mg/Kg-dry	1	3/20/2014
trans-1,2-Dichloroethene	ND	0.0041	mg/Kg-dry	1	3/20/2014
1,2-Dichloropropane	ND	0.0041	mg/Kg-dry	1	3/20/2014
cis-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	3/20/2014
trans-1,3-Dichloropropene	ND	0.0017	mg/Kg-dry	1	3/20/2014
Ethylbenzene	0.019	0.0041	mg/Kg-dry	1	3/20/2014
2-Hexanone	ND	0.017	mg/Kg-dry	1	3/20/2014
4-Methyl-2-pentanone	ND	0.017	mg/Kg-dry	1	3/20/2014
Methylene chloride	ND	0.0081	mg/Kg-dry	1	3/20/2014
Methyl tert-butyl ether	ND	0.0041	mg/Kg-dry	1	3/20/2014
Styrene	ND	0.0041	mg/Kg-dry	1	3/20/2014
1,1,2,2-Tetrachloroethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
Tetrachloroethene	ND	0.0041	mg/Kg-dry	1	3/20/2014
Toluene	0.029	0.0041	mg/Kg-dry	1	3/20/2014
1,1,1-Trichloroethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
1,1,2-Trichloroethane	ND	0.0041	mg/Kg-dry	1	3/20/2014
Trichloroethene	ND	0.0041	mg/Kg-dry	1	3/20/2014
Vinyl chloride	ND	0.0041	mg/Kg-dry	1	3/20/2014
Xylenes, Total	0.11	0.012	mg/Kg-dry	1	3/20/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014 **ANALYTICAL RESULTS**

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: Pipex 2-031914

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill Collection Date: 3/19/2014 2:00:00 PM

Lab ID: Matrix: Soil 14030589-001B

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW8015N	I (SW3	3580A)	Prep	Date:	3/20/2014 Analyst: MDM
TPH (GRO)	ND	23	ا	mg/Kg-dry	1	3/20/2014
TPH (DRO)	ND	23	1	mg/Kg-dry	1	3/20/2014
TPH (ERO)	ND	23	*	mg/Kg-dry	1	3/20/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW8270C	(SW3	3550B)	Prep	Date:	3/20/2014 Analyst: DM
Acenaphthene	ND	0.039	I	mg/Kg-dry	1	3/20/2014
Acenaphthylene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Anthracene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Benz(a)anthracene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Benzo(a)pyrene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Benzo(b)fluoranthene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Benzo(g,h,i)perylene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Benzo(k)fluoranthene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Chrysene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Dibenz(a,h)anthracene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Fluoranthene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Fluorene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Indeno(1,2,3-cd)pyrene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Naphthalene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Phenanthrene	ND	0.039	1	mg/Kg-dry	1	3/20/2014
Pyrene	ND	0.039	I	mg/Kg-dry	1	3/20/2014
Percent Moisture	D2974			Prep	Date:	3/19/2014 Analyst: VA
Percent Moisture	15.2	0.2	*	wt%	1	3/20/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014

ANALYTICAL RESULTS

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: Pipex 7-031914

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill Collection Date: 3/19/2014 2:25:00 PM

Lab ID: Matrix: Soil 14030589-002A

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW503	5/8260B	Prep	Date: 3/19/2014	Analyst: PS
Acetone	ND	4.5	mg/Kg-dry	50	3/20/2014
Benzene	2	0.29	mg/Kg-dry	50	3/20/2014
Bromodichloromethane	ND	0.29	mg/Kg-dry	50	3/20/2014
Bromoform	ND	0.29	mg/Kg-dry	50	3/20/2014
Bromomethane	ND	0.59	mg/Kg-dry	50	3/20/2014
2-Butanone	ND	4.5	mg/Kg-dry	50	3/20/2014
Carbon disulfide	ND	2.9	mg/Kg-dry	50	3/20/2014
Carbon tetrachloride	ND	0.29	mg/Kg-dry	50	3/20/2014
Chlorobenzene	ND	0.29	mg/Kg-dry	50	3/20/2014
Chloroethane	ND	0.59	mg/Kg-dry	50	3/20/2014
Chloroform	ND	0.29	mg/Kg-dry	50	3/20/2014
Chloromethane	ND	0.59	mg/Kg-dry	50	3/20/2014
Dibromochloromethane	ND	0.29	mg/Kg-dry	50	3/20/2014
1,1-Dichloroethane	ND	0.29	mg/Kg-dry	50	3/20/2014
1,2-Dichloroethane	ND	0.29	mg/Kg-dry	50	3/20/2014
1,1-Dichloroethene	ND	0.29	mg/Kg-dry	50	3/20/2014
cis-1,2-Dichloroethene	ND	0.29	mg/Kg-dry	50	3/20/2014
trans-1,2-Dichloroethene	ND	0.29	mg/Kg-dry	50	3/20/2014
1,2-Dichloropropane	ND	0.29	mg/Kg-dry	50	3/20/2014
cis-1,3-Dichloropropene	ND	0.12	mg/Kg-dry	50	3/20/2014
trans-1,3-Dichloropropene	ND	0.12	mg/Kg-dry	50	3/20/2014
Ethylbenzene	10	0.29	mg/Kg-dry	50	3/20/2014
2-Hexanone	ND	1.2	mg/Kg-dry	50	3/20/2014
4-Methyl-2-pentanone	ND	1.2	mg/Kg-dry	50	3/20/2014
Methylene chloride	ND	0.59	mg/Kg-dry	50	3/20/2014
Methyl tert-butyl ether	ND	0.29	mg/Kg-dry	50	3/20/2014
Styrene	ND	0.29	mg/Kg-dry	50	3/20/2014
1,1,2,2-Tetrachloroethane	ND	0.29	mg/Kg-dry	50	3/20/2014
Tetrachloroethene	ND	0.29	mg/Kg-dry	50	3/20/2014
Toluene	31	2.9	mg/Kg-dry	500	3/20/2014
1,1,1-Trichloroethane	ND	0.29	mg/Kg-dry	50	3/20/2014
1,1,2-Trichloroethane	ND	0.29	mg/Kg-dry	50	3/20/2014
Trichloroethene	ND	0.29	mg/Kg-dry	50	3/20/2014
Vinyl chloride	ND	0.29	mg/Kg-dry	50	3/20/2014
Xylenes, Total	45	8.8	mg/Kg-dry	500	3/20/2014

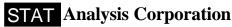
ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014

ANALYTICAL RESULTS

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: Pipex 7-031914

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill **Collection Date**: 3/19/2014 2:25:00 PM

Lab ID: 14030589-002B **Matrix:** Soil

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW8015M	(SW3580A)	Prep	Date: \$	3/20/2014 Analyst: MDM
TPH (GRO)	ND	23	mg/Kg-dry	1	3/20/2014
TPH (DRO)	ND	23	mg/Kg-dry	1	3/20/2014
TPH (ERO)	ND	23 *	mg/Kg-dry	1	3/20/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8270C	(SW3550B)	Prep	Date: 3	3/20/2014 Analyst: DM
Acenaphthene	ND	0.04	mg/Kg-dry	1	3/20/2014
Acenaphthylene	ND	0.04	mg/Kg-dry	1	3/20/2014
Anthracene	ND	0.04	mg/Kg-dry	1	3/20/2014
Benz(a)anthracene	ND	0.04	mg/Kg-dry	1	3/20/2014
Benzo(a)pyrene	ND	0.04	mg/Kg-dry	1	3/20/2014
Benzo(b)fluoranthene	ND	0.04	mg/Kg-dry	1	3/20/2014
Benzo(g,h,i)perylene	ND	0.04	mg/Kg-dry	1	3/20/2014
Benzo(k)fluoranthene	ND	0.04	mg/Kg-dry	1	3/20/2014
Chrysene	ND	0.04	mg/Kg-dry	1	3/20/2014
Dibenz(a,h)anthracene	ND	0.04	mg/Kg-dry	1	3/20/2014
Fluoranthene	ND	0.04	mg/Kg-dry	1	3/20/2014
Fluorene	ND	0.04	mg/Kg-dry	1	3/20/2014
Indeno(1,2,3-cd)pyrene	ND	0.04	mg/Kg-dry	1	3/20/2014
Naphthalene	0.05	0.04	mg/Kg-dry	1	3/20/2014
Phenanthrene	ND	0.04	mg/Kg-dry	1	3/20/2014
Pyrene	ND	0.04	mg/Kg-dry	1	3/20/2014
Percent Moisture	D2974		Prep	Date: 3	3/19/2014 Analyst: VA
Percent Moisture	17.4	0.2 *	wt%	1	3/20/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014

ANALYTICAL RESULTS

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: Pipex 10-031914

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill **Collection Date**: 3/19/2014 2:40:00 PM

Lab ID: 14030589-003A **Matrix:** Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/19/2014	Analyst: PS
Acetone	ND	0.08	mg/Kg-dry	1	3/20/2014
Benzene	ND	0.0053	mg/Kg-dry	1	3/20/2014
Bromodichloromethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
Bromoform	ND	0.0053	mg/Kg-dry	1	3/20/2014
Bromomethane	ND	0.011	mg/Kg-dry	1	3/20/2014
2-Butanone	ND	0.08	mg/Kg-dry	1	3/20/2014
Carbon disulfide	ND	0.053	mg/Kg-dry	1	3/20/2014
Carbon tetrachloride	ND	0.0053	mg/Kg-dry	1	3/20/2014
Chlorobenzene	ND	0.0053	mg/Kg-dry	1	3/20/2014
Chloroethane	ND	0.011	mg/Kg-dry	1	3/20/2014
Chloroform	ND	0.0053	mg/Kg-dry	1	3/20/2014
Chloromethane	ND	0.011	mg/Kg-dry	1	3/20/2014
Dibromochloromethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,1-Dichloroethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,2-Dichloroethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,1-Dichloroethene	ND	0.0053	mg/Kg-dry	1	3/20/2014
cis-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	3/20/2014
trans-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,2-Dichloropropane	ND	0.0053	mg/Kg-dry	1	3/20/2014
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	3/20/2014
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	3/20/2014
Ethylbenzene	ND	0.0053	mg/Kg-dry	1	3/20/2014
2-Hexanone	ND	0.021	mg/Kg-dry	1	3/20/2014
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	3/20/2014
Methylene chloride	ND	0.011	mg/Kg-dry	1	3/20/2014
Methyl tert-butyl ether	ND	0.0053	mg/Kg-dry	1	3/20/2014
Styrene	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,1,2,2-Tetrachloroethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
Tetrachloroethene	ND	0.0053	mg/Kg-dry	1	3/20/2014
Toluene	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,1,1-Trichloroethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
1,1,2-Trichloroethane	ND	0.0053	mg/Kg-dry	1	3/20/2014
Trichloroethene	ND	0.0053	mg/Kg-dry	1	3/20/2014
Vinyl chloride	ND	0.0053	mg/Kg-dry	1	3/20/2014
Xylenes, Total	ND	0.016	mg/Kg-dry	1	3/20/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014

ANALYTICAL RESULTS

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: Pipex 10-031914

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill **Collection Date**: 3/19/2014 2:40:00 PM

Lab ID: 14030589-003B **Matrix:** Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Total Petroleum Hydrocarbons	SW8015N	1 (SW3	3580A)	Prep	Date: 3/20/2014	4 Analyst: MDM
TPH (GRO)	ND	24		mg/Kg-dry	1	3/20/2014
TPH (DRO)	ND	24		mg/Kg-dry	1	3/20/2014
TPH (ERO)	ND	24	*	mg/Kg-dry	1	3/20/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	S SW82700	(SW3	3550B)	Prep	Date: 3/20/2014	4 Analyst: DM
Acenaphthene	ND	0.041		mg/Kg-dry	1	3/20/2014
Acenaphthylene	ND	0.041		mg/Kg-dry	1	3/20/2014
Anthracene	ND	0.041		mg/Kg-dry	1	3/20/2014
Benz(a)anthracene	ND	0.041		mg/Kg-dry	1	3/20/2014
Benzo(a)pyrene	ND	0.041		mg/Kg-dry	1	3/20/2014
Benzo(b)fluoranthene	ND	0.041		mg/Kg-dry	1	3/20/2014
Benzo(g,h,i)perylene	ND	0.041		mg/Kg-dry	1	3/20/2014
Benzo(k)fluoranthene	ND	0.041		mg/Kg-dry	1	3/20/2014
Chrysene	ND	0.041		mg/Kg-dry	1	3/20/2014
Dibenz(a,h)anthracene	ND	0.041		mg/Kg-dry	1	3/20/2014
Fluoranthene	ND	0.041		mg/Kg-dry	1	3/20/2014
Fluorene	ND	0.041		mg/Kg-dry	1	3/20/2014
Indeno(1,2,3-cd)pyrene	ND	0.041		mg/Kg-dry	1	3/20/2014
Naphthalene	ND	0.041		mg/Kg-dry	1	3/20/2014
Phenanthrene	ND	0.041		mg/Kg-dry	1	3/20/2014
Pyrene	ND	0.041		mg/Kg-dry	1	3/20/2014
Percent Moisture	D2974			Prep	Date: 3/19/2014	4 Analyst: VA
Percent Moisture	20.9	0.2	*	wt%	1	3/20/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014 **Print Date:** March 20, 2014 **ANALYTICAL RESULTS**

Client: Weston Solutions Client Sample ID: BKG-SW6-031714

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill **Collection Date**: 3/17/2014 4:30:00 PM

Lab ID: 14030589-004A **Matrix:** Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep	Date: 3/19/2014	Analyst: PS
Acetone	ND	0.097	mg/Kg-dry	1	3/20/2014
Benzene	ND	0.0064	mg/Kg-dry	1	3/20/2014
Bromodichloromethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
Bromoform	ND	0.0064	mg/Kg-dry	1	3/20/2014
Bromomethane	ND	0.013	mg/Kg-dry	1	3/20/2014
2-Butanone	ND	0.097	mg/Kg-dry	1	3/20/2014
Carbon disulfide	ND	0.064	mg/Kg-dry	1	3/20/2014
Carbon tetrachloride	ND	0.0064	mg/Kg-dry	1	3/20/2014
Chlorobenzene	ND	0.0064	mg/Kg-dry	1	3/20/2014
Chloroethane	ND	0.013	mg/Kg-dry	1	3/20/2014
Chloroform	ND	0.0064	mg/Kg-dry	1	3/20/2014
Chloromethane	ND	0.013	mg/Kg-dry	1	3/20/2014
Dibromochloromethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,1-Dichloroethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,2-Dichloroethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,1-Dichloroethene	ND	0.0064	mg/Kg-dry	1	3/20/2014
cis-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	3/20/2014
trans-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,2-Dichloropropane	ND	0.0064	mg/Kg-dry	1	3/20/2014
cis-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	3/20/2014
trans-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	3/20/2014
Ethylbenzene	ND	0.0064	mg/Kg-dry	1	3/20/2014
2-Hexanone	ND	0.026	mg/Kg-dry	1	3/20/2014
4-Methyl-2-pentanone	ND	0.026	mg/Kg-dry	1	3/20/2014
Methylene chloride	ND	0.013	mg/Kg-dry	1	3/20/2014
Methyl tert-butyl ether	ND	0.0064	mg/Kg-dry	1	3/20/2014
Styrene	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,1,2,2-Tetrachloroethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
Tetrachloroethene	ND	0.0064	mg/Kg-dry	1	3/20/2014
Toluene	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,1,1-Trichloroethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
1,1,2-Trichloroethane	ND	0.0064	mg/Kg-dry	1	3/20/2014
Trichloroethene	ND	0.0064	mg/Kg-dry	1	3/20/2014
Vinyl chloride	ND	0.0064	mg/Kg-dry	1	3/20/2014
Xylenes, Total	ND	0.019	mg/Kg-dry	1	3/20/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Report Date: March 20, 2014 **ANALYTICAL RESULTS**

Print Date: March 20, 2014

Client: Weston Solutions Client Sample ID: BKG-SW6-031714

Lab Order: 14030589 Tag Number:

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill Collection Date: 3/17/2014 4:30:00 PM

Lab ID: 14030589-004B Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF		Date Analyzed
Total Petroleum Hydrocarbons	SW8015M	1 (SW3	580A)	Prep	Date:	3/20/2014	Analyst: MDM
TPH (GRO)	ND	26		mg/Kg-dry	1		3/20/2014
TPH (DRO)	ND	26	1	mg/Kg-dry	1		3/20/2014
TPH (ERO)	ND	26	*	mg/Kg-dry	1		3/20/2014
Polynuclear Aromatic Hydrocarbons by GC/MS	SW8270C	(SW3	550B)	Prep	Date:	3/20/2014	Analyst: DM
Acenaphthene	ND	0.044	I	mg/Kg-dry	1		3/20/2014
Acenaphthylene	ND	0.044	I	mg/Kg-dry	1		3/20/2014
Anthracene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Benz(a)anthracene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Benzo(a)pyrene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Benzo(b)fluoranthene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Benzo(g,h,i)perylene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Benzo(k)fluoranthene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Chrysene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Dibenz(a,h)anthracene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Fluoranthene	ND	0.044	I	mg/Kg-dry	1		3/20/2014
Fluorene	ND	0.044	I	mg/Kg-dry	1		3/20/2014
Indeno(1,2,3-cd)pyrene	ND	0.044	I	mg/Kg-dry	1		3/20/2014
Naphthalene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Phenanthrene	ND	0.044	1	mg/Kg-dry	1		3/20/2014
Pyrene	ND	0.044	I	mg/Kg-dry	1		3/20/2014
Percent Moisture	D2974			Prep	Date:	3/19/2014	Analyst: VA
Percent Moisture	26.5	0.2	*	wt%	1		3/20/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 AIHA, NVLAP and NELAP accredited e-mail address: STATinfo@STATAnalysis.com

854804

Tum Around: Results Needed: am/pm 14030589 Lab No.: 6 500 ナいり Received on Ice: Yes No <u>|</u>ල of o aboratory Work Order No.: Temperature: 2,7 Remarks **Preservation Code:** A = None $B = HNO_3$ C = NaOHG = Other0 $D = H_2SO_4$ E = HCl F = 5035/EnCoreCHAIN OF CUSTODY RECORD Quote No.: P.O. No.: Comments: 23 e-mail: 19 aczy kecs of Man Containers No. of Date/Time: 3/14/14 2005, 2356,000 Tracking No.: Crab Date/Time: Phone: 312-424 Date/Time: Date/Time: Comp Date/Time: Date/Time: Matrix <u>ر</u> الم) 5 CMS 28 Time Taken Fax: 対したが Date Taken 0 A <u>5</u> Project Location: Kandale & Report To: L'S GRACEL Client Sample Number/Description: -031914 10 CO-PICKO-0 Project Name: **buckers** Project Number: 20405, Company: Company Relinquished by: (Signature) 😭 Refinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) QC Level: 1 Sampler(s):

STAT Analysis Corporation

Sample Receipt Checklist

Client Name WESTON CHICAGO		Date and Time Received: 3/19/2014 2:30:00 PM
Work Order Number 14030589		Received by: DO
Checklist completed by: Signature Date	19/14	Reviewed by: 03/20/2014 Initials Date
Matrix: Carrier name	Client Delivered	
Shipping container/cooler in good condition?	Yes 🗸	No Not Present
Custody seals intact on shippping container/cooler?	Yes	No ☐ Not Present ☑
Custody seals intact on sample bottles?	Yes	No ☐ Not Present ☑
Chain of custody present?	Yes 🗸	No 🗀
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌
Chain of custody agrees with sample labels/containers?	Yes 🗸	No 🗀 "
Samples in proper container/bottle?	Yes 🗹	No 🗌
Sample containers intact?	Yes 🗹	No 🗌
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌
All samples received within holding time?	Yes 🗸	No 🗌
Container or Temp Blank temperature in compliance?	Yes 🗸	No Temperature 2.7 °C
Water - VOA vials have zero headspace? No VOA vials subm	itted	Yes No
Water - Samples pH checked?	Yes 🖺	No Checked by:
Water - Samples properly preserved?	Yes 🔳	No pH Adjusted?
Any No response must be detailed in the comments section below.		
Comments:		
Client / Person contacted: Date contacted:		Contacted by:
Response:		

CLIENT: Weston Solutions

Work Order: 14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

Test No: SW5035/8260B Matrix: S

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	BR4FBZ	BZMED8	DBFM	DCA12D4		
VBLK031914A-2	93.2	101	97.8	106		
VLCS031914A-2	98.4	101	98.7	102		
VLCSD031914A-2	98.5	102	101	102		
14030589-002A:50	104	97.8	92.6	96.5		
14030589-003A	90.1	95.8	104	112		
14030589-004A	87.4	97.8	80.6	91.7		
14030589-001A	99.9	98.7	73.2 *	84.4		
14030589-002A:500	102	102	97.4	114		

Acronym		Surrogate	QC Limits
BR4FBZ	=	4-Bromofluorobenzene	63-110
BR4FBZ	=	4-Bromofluorobenzene	44-114
BZMED8	=	Toluene-d8	85-110
BZMED8	=	Toluene-d8	62-122
DBFM	=	Dibromofluoromethane	83-119
DBFM	=	Dibromofluoromethane	74-150
DCA12D4	=	1,2-Dichloroethane-d4	84-129
DCA12D4	=	1,2-Dichloroethane-d4	78-160

^{*} Surrogate recovery outside acceptance limit

Analytical Run Summary

 Run ID:
 VOA-2_140319B (R97295)
 Analyst:
 PS

 Printed:
 20-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyzed
2629092	BFB031914A-2	TUNE	BFB	R97295	1	H:\VOC-2\031914A\031	03/19/2014 19:51
2629093	VSTD100R	CCV	VOC_ENCORE+	R97295	1	H:\VOC-2\031914A\031	03/19/2014 21:03
2629094	VBLK031914A-2	MBLK	VOC_ENCORE+	R97295	1	H:\VOC-2\031914A\031	03/19/2014 21:40
2629096	VLCS031914A-2	LCS	VOC_ENCORE+	R97295	1	H:\VOC-2\031914A\031	03/19/2014 22:15
2629097	VLCSD031914A-2	LCSD	VOC_ENCORE+	R97295	1	H:\VOC-2\031914A\031	03/19/2014 22:50
2629099	14030589-002A	SAMP	VOC_5035	75154	50	H:\VOC-2\031914A\031	03/20/2014 0:03
2629100	14030589-003A	SAMP	VOC_5035	75154	1	H:\VOC-2\031914A\031	03/20/2014 1:48
2629101	14030589-004A	SAMP	VOC_5035	75154	1	H:\VOC-2\031914A\031	03/20/2014 2:23
2629102	14030589-001A	SAMP	VOC_5035	75154	1	H:\VOC-2\031914A\031	03/20/2014 2:58
2629103	14030589-002A	SAMP	VOC_5035	75154	500	H:\VOC-2\031914A\031	03/20/2014 3:32
2629104	14030415-001A	SAMP	VOC_ENCORE	73901	1	H:\VOC-2\031914A\031	03/20/2014 4:07
2629105	14030415-002A	SAMP	VOC_ENCORE	73901	1	H:\VOC-2\031914A\031	03/20/2014 4:42
2629106	14030415-012A	SAMP	BTEX_ENCORE	74572	1	H:\VOC-2\031914A\031	03/20/2014 5:17
2629107	14030552-001A	SAMP	F-LIST_VOC	75052	1	H:\VOC-2\031914A\031	03/20/2014 5:51
2629108	14030475-002A	SAMP	VOC_5035	75166	1	H:\VOC-2\031914A\031	03/20/2014 6:26
2629109	14030424-005A	SAMP	VOC_5035	75211	50	H:\VOC-2\031914A\031	03/20/2014 7:00
2629110	14030424-009A	SAMP	VOC_5035	75211	50	H:\VOC-2\031914A\031	03/20/2014 7:35

ANALYTICAL QC SUMMARY REPORT

Work Order: 14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill BatchID: R97295

Sample ID: VBLK031914A-2	SampType: MBLK	TestCoo	de: VOC_ENC	OR Units: mg/Kg		Prep Dat	te:		Run ID: VOA-2_140319B		
Client ID: ZZZZZ	Batch ID: R97295	TestN	lo: SW5035/8 2	260		Analysis Dat	te: 3/19/20	14	SeqNo: 262	9094	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	0.0050									
1,1,2,2-Tetrachloroethane	ND	0.0050									
1,1,2-Trichloroethane	ND	0.0050									
1,1-Dichloroethane	ND	0.0050									
1,1-Dichloroethene	ND	0.0050									
1,2-Dichloroethane	ND	0.0050									
1,2-Dichloropropane	ND	0.0050									
2-Butanone	ND	0.075									
2-Hexanone	ND	0.020									
4-Methyl-2-pentanone	ND	0.020									
Acetone	ND	0.075									
Benzene	ND	0.0050									
Bromodichloromethane	ND	0.0050									
Bromoform	ND	0.0050									
Bromomethane	ND	0.010									
Carbon disulfide	ND	0.050									
Carbon tetrachloride	ND	0.0050									
Chlorobenzene	ND	0.0050									
Chloroethane	ND	0.010									
Chloroform	ND	0.0050									
Chloromethane	ND	0.010									
cis-1,2-Dichloroethene	ND	0.0050									
cis-1,3-Dichloropropene	ND	0.0020									
Dibromochloromethane	ND	0.0050									
Ethylbenzene	ND	0.0050									
Methyl tert-butyl ether	ND	0.0050									
Methylene chloride	0.00208	0.010									J
Styrene	ND	0.0050									
Tetrachloroethene	ND	0.0050									
Toluene	ND	0.0050									
trans-1,2-Dichloroethene	ND	0.0050									
, <u>-</u> =	NU	3.3000									

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97295

Sample ID: VBLK031914A-2 Client ID: ZZZZZ	SampType: MBLK Batch ID: R97295	TestNo: SW5035/8260 Units: mg/Kg		Prep Date: Analysis Date: 3/19/2014				Run ID: VOA-2_140319B SeqNo: 2629094			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropene	ND	0.0020									
Trichloroethene	ND	0.0050									
Vinyl chloride	ND	0.0050									
Xylenes, Total	ND	0.015									

Sample ID: VLCS031914A-2	SampType: LCS	TestCod	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140319E	3
Client ID: ZZZZZ	Batch ID: R97295	TestN	lo: SW5035/8 2	260		Analysis Da	ate: 3/19/20	14	SeqNo: 262	9096	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.05371	0.0050	0.05	0	107	70	130	0	0		
1,1,2,2-Tetrachloroethane	0.05682	0.0050	0.05	0	114	70	130	0	0		
1,1,2-Trichloroethane	0.05362	0.0050	0.05	0	107	70	130	0	0		
1,1-Dichloroethane	0.05367	0.0050	0.05	0	107	70	130	0	0		
1,1-Dichloroethene	0.04539	0.0050	0.05	0	90.8	70	130	0	0		
1,2-Dichloroethane	0.05093	0.0050	0.05	0	102	70	130	0	0		
1,2-Dichloropropane	0.05391	0.0050	0.05	0	108	70	130	0	0		
2-Butanone	0.1003	0.075	0.1	0	100	70	130	0	0		
2-Hexanone	0.09771	0.020	0.1	0	97.7	70	130	0	0		
4-Methyl-2-pentanone	0.1001	0.020	0.1	0	100	70	130	0	0		
Acetone	0.1149	0.075	0.1	0	115	50	150	0	0		
Benzene	0.0535	0.0050	0.05	0	107	70	130	0	0		
Bromodichloromethane	0.05411	0.0050	0.05	0	108	70	130	0	0		
Bromoform	0.05704	0.0050	0.05	0	114	70	130	0	0		
Bromomethane	0.04174	0.010	0.05	0	83.5	70	130	0	0		
Carbon disulfide	0.1221	0.050	0.1	0	122	70	130	0	0		
Carbon tetrachloride	0.05285	0.0050	0.05	0	106	70	130	0	0		
Chlorobenzene	0.05524	0.0050	0.05	0	110	70	130	0	0		
Chloroethane	0.06179	0.010	0.05	0	124	70	130	0	0		
Chloroform	0.05238	0.0050	0.05	0	105	70	130	0	0		
Chloromethane	0.0593	0.010	0.05	0	119	70	130	0	0		
cis-1,2-Dichloroethene	0.05329	0.0050	0.05	0	107	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Sample ID: VLCS031914A-2

Work Order:

14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

SampType: LCS

ANALYTICAL QC SUMMARY REPORT

BatchID: R97295

Run ID: VOA-2_140319B

Prep Date:

70

107

130

Campio ib. VEGGGGTGT ii.t E	camp Type: 200	100.00	do. 100_2.100	ormo. mg/ng	Top Bato.						
Client ID: ZZZZZ	Batch ID: R97295	TestN	No: SW5035/82	60	Analysis Date: 3/19/2014			14	SeqNo: 262	29096	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	0.05127	0.0020	0.05	0	103	70	130	0	0		
Dibromochloromethane	0.05523	0.0050	0.05	0	110	70	130	0	0		
Ethylbenzene	0.0583	0.0050	0.05	0	117	70	130	0	0		
Methyl tert-butyl ether	0.05143	0.0050	0.05	0	103	70	130	0	0		
Methylene chloride	0.04688	0.010	0.05	0.00208	89.6	70	130	0	0		
Styrene	0.05742	0.0050	0.05	0	115	70	130	0	0		
Tetrachloroethene	0.05772	0.0050	0.05	0	115	70	130	0	0		
Toluene	0.05419	0.0050	0.05	0	108	70	130	0	0		
trans-1,2-Dichloroethene	0.05093	0.0050	0.05	0	102	70	130	0	0		
trans-1,3-Dichloropropene	0.05666	0.0020	0.05	0	113	70	130	0	0		
Trichloroethene	0.05079	0.0050	0.05	0	102	70	130	0	0		
Vinyl chloride	0.06294	0.0050	0.05	0	126	70	130	0	0		
Xylenes, Total	0.1689	0.015	0.15	0	113	70	130	0	0		
Sample ID: VLCSD031914A-2	SampType: LCSD	TestCo	de: VOC_ENCO	OR Units: mg/Kg		Prep Da	te:		Run ID: VO	A-2_140319E	3
Client ID: ZZZZZ	Batch ID: R97295	Test	No: SW5035/82	60		Analysis Da	ite: 3/19/20	14	SeqNo: 262	29097	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1,1-Trichloroethane	0.05323	0.0050	0.05	0	106	70	130	0.05371	0.898	20	
1,1,2,2-Tetrachloroethane	0.05455	0.0050	0.05	0	109	70	130	0.05682	4.08	20	
1,1,2-Trichloroethane	0.05469	0.0050	0.05	0	109	70	130	0.05362	1.98	20	
1,1-Dichloroethane	0.0544	0.0050	0.05	0	109	70	130	0.05367	1.35	20	
1,1-Dichloroethene	0.0444	0.0050	0.05	0	88.8	70	130	0.04539	2.21	20	
1,2-Dichloroethane	0.05041	0.0050	0.05	0	101	70	130	0.05093	1.03	20	
1,2-Dichloropropane	0.05427	0.0050	0.05	0	109	70	130	0.05391	0.666	20	
2-Butanone	0.09698	0.075	0.1	0	97	70	130	0.1003	3.40	20	
2-Hexanone	0.0943	0.020	0.1	0	94.3	70	130	0.09771	3.55	20	
4 Mathed O mantanana											
4-Methyl-2-pentanone	0.1032	0.020	0.1	0	103	70	130	0.1001	3.05	20	
4-Metnyl-z-pentanone Acetone	0.1032 0.1092	0.020 0.075	0.1 0.1	0 0	103 109	70 50	130 150	0.1001 0.1149	3.05 5.03	20 20	

TestCode: VOC_ENCOR Units: mg/Kg

Qualifiers:

Bromodichloromethane

ND - Not Detected at the Reporting Limit

0.05367

0.0050

0

0.05

0.816

20

0.05411

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97295

Sample ID: VLCSD031914A-2	SampType: LCSD	TestCoo	de: VOC_ENC	OR Units: mg/Kg		Prep Da	te:		Run ID: VOA-2_140319B			
Client ID: ZZZZZ	Batch ID: R97295	TestN	lo: SW5035/8 2	260		Analysis Da	ite: 3/19/20	14	SeqNo: 262	9097		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Bromoform	0.05613	0.0050	0.05	0	112	70	130	0.05704	1.61	20		
Bromomethane	0.04412	0.010	0.05	0	88.2	70	130	0.04174	5.54	20		
Carbon disulfide	0.1233	0.050	0.1	0	123	70	130	0.1221	0.970	20		
Carbon tetrachloride	0.05407	0.0050	0.05	0	108	70	130	0.05285	2.28	20		
Chlorobenzene	0.05379	0.0050	0.05	0	108	70	130	0.05524	2.66	20		
Chloroethane	0.06345	0.010	0.05	0	127	70	130	0.06179	2.65	20		
Chloroform	0.05311	0.0050	0.05	0	106	70	130	0.05238	1.38	20		
Chloromethane	0.06258	0.010	0.05	0	125	70	130	0.0593	5.38	20		
cis-1,2-Dichloroethene	0.05476	0.0050	0.05	0	110	70	130	0.05329	2.72	20		
cis-1,3-Dichloropropene	0.05258	0.0020	0.05	0	105	70	130	0.05127	2.52	20		
Dibromochloromethane	0.05469	0.0050	0.05	0	109	70	130	0.05523	0.983	20		
Ethylbenzene	0.0573	0.0050	0.05	0	115	70	130	0.0583	1.73	20		
Methyl tert-butyl ether	0.05077	0.0050	0.05	0	102	70	130	0.05143	1.29	20		
Methylene chloride	0.04506	0.010	0.05	0.00208	86	70	130	0.04688	3.96	20		
Styrene	0.05712	0.0050	0.05	0	114	70	130	0.05742	0.524	20		
Tetrachloroethene	0.05699	0.0050	0.05	0	114	70	130	0.05772	1.27	20		
Toluene	0.0546	0.0050	0.05	0	109	70	130	0.05419	0.754	20		
trans-1,2-Dichloroethene	0.05049	0.0050	0.05	0	101	70	130	0.05093	0.868	20		
trans-1,3-Dichloropropene	0.05805	0.0020	0.05	0	116	70	130	0.05666	2.42	20		
Trichloroethene	0.05156	0.0050	0.05	0	103	70	130	0.05079	1.50	20		
Vinyl chloride	0.06371	0.0050	0.05	0	127	70	130	0.06294	1.22	20		
Xylenes, Total	0.1652	0.015	0.15	0	110	70	130	0.1689	2.25	20		

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

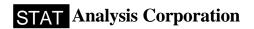
B - Analyte detected in the associated Method Blank

E - Value above quantitation range

CLIENT: Weston Solutions

Work Order: 14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill


Test No: SW8270C Matrix: S

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	CLPH2D4	DCBZ12D4	NO2BZD5	PH246BR	PH2F	PHD5	PHEN2F	PHEND14
MB-75181-SVOC	70.3	79.7	74.2	88.7	68.4	67.6	77.1	87.4
LCS-75181-SVOC	58.9	64.6	63.0	78.5	56.6	59.3	69.2	80.5
14030492-008AMS	48.1	51.8	54.0	70.4	44.3	50.3	62.7	68.4
14030492-008AMSD	69.2	74.7	77.4	82.2	65.3	69.6	81.0	77.5
14030589-001B	72.8	81.3	82.7	97.7	68.8	72.9	85.0	98.8
14030589-002B	76.6	85.6	87.4	99.2	72.2	75.9	88.4	102
14030589-003B	66.6	72.2	71.9	85.5	64.5	65.8	75.2	87.8
14030589-004B	52.4	57.4	55.9	69.8	49.8	51.9	60.7	74.8

Acronym		Surrogate	QC Limits
CLPH2D4	=	2-Chlorophenol-d4	20-130
DCBZ12D4	=	1,2-Dichlorobenzene-d4	20-130
NO2BZD5	=	Nitrobenzene-d5	23-120
PH246BR	=	2,4,6-Tribromophenol	19-122
PH2F	=	2-Fluorophenol	25-121
PHD5	=	Phenol-d5	24-113
PHEN2F	=	2-Fluorobiphenyl	30-115
PHEND14	=	4-Terphenyl-d14	18-137

^{*} Surrogate recovery outside acceptance limit

PREP BATCH REPORT

Prep Start Date: 3/19/2014 9:48:32 A
Prep End Date: 3/20/2014 2:50:40 P

Prep Factor Units:

Prep Batch 75181 Prep Code: 3550_SVOC Technician: ADM mL/Kg

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75181-SVOC			0.03	0	0	1	33.333	3/19/2014	3/19/2014
LCS-75181-SVOC			0.03	0	0	1	33.333	3/19/2014	3/19/2014
14030492-007A	Soil		0.03017	0	0	10	331.455	3/19/2014	3/19/2014
14030492-008A	Soil		0.03006	0	0	1	33.267	3/19/2014	3/19/2014
14030492-009B	Soil		0.03007	0	0	1	33.256	3/19/2014	3/19/2014
14030492-010B	Soil		0.0301	0	0	1	33.223	3/19/2014	3/19/2014
14030492-011A	Soil		0.03013	0	0	1	33.190	3/19/2014	3/19/2014
14030492-012A	Soil		0.03002	0	0	1	33.311	3/19/2014	3/19/2014
14030549-001B	Soil		0.03015	0	0	1	33.167	3/19/2014	3/19/2014
14030492-008AMS	Soil		0.03004	0	0	1	33.289	3/19/2014	3/19/2014
14030492-008AMSD	Soil		0.03004	0	0	1	33.289	3/19/2014	3/19/2014
14030552-001A	Soil		0.03019	0	0	1	33.124	3/19/2014	3/19/2014
14030589-001B	Soil		0.03011	0	0	1	33.212	3/20/2014	3/20/2014
14030589-002B	Soil		0.03008	0	0	1	33.245	3/20/2014	3/20/2014
14030589-003B	Soil		0.0303	0	0	1	33.003	3/20/2014	3/20/2014
14030589-004B	Soil		0.03033	0	0	1	32.971	3/20/2014	3/20/2014
14030573-071B	Soil		0.03022	0	0	1	33.091	3/20/2014	3/20/2014

ANALYTICAL QC SUMMARY REPORT

Work Order: 14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

BatchID: 75181

Sample ID: MB-75181-SVOC	SampType: MBLK	TestCoo	le: SVOC_SOI	L Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319)B
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Date: 3/19/2014			SeqNo: 2628849		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.033									
Acenaphthylene	ND	0.033									
Anthracene	ND	0.033									
Benz(a)anthracene	ND	0.033									
Benzo(a)pyrene	ND	0.033									
Benzo(b)fluoranthene	ND	0.033									
Benzo(g,h,i)perylene	ND	0.033									
Benzo(k)fluoranthene	ND	0.033									
Chrysene	ND	0.033									
Dibenz(a,h)anthracene	ND	0.033									
Fluoranthene	ND	0.033									
Fluorene	ND	0.033									
ndeno(1,2,3-cd)pyrene	ND	0.033									
Naphthalene	ND	0.033									
Phenanthrene	ND	0.033									
Pyrene	ND	0.033									
Sample ID: LCS-75181-SVOC	SampType: LCS	TestCoo	le: SVOC_SOI	L Units: mg/Kg		Prep Da	te: 3/19/20	14	Run ID: SV	OC-5_140319	В
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Da	ite: 3/19/20	14	SeqNo: 262	18859	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1.302	0.033	1.667	0	78.1	37	134	0	0		
4-Chloro-3-methylphenol	2.306	0.33	3.333	0	69.2	29	134	0	0		

Qualifiers:	ND - Not Detected	d at the Reporting Limit
-------------	-------------------	--------------------------

2-Chlorophenol

4-Nitrophenol

1,4-Dichlorobenzene

N-Nitrosodi-n-propylamine

2,4-Dinitrotoluene

Pentachlorophenol

1.925

1.044

1.264

2.711

1.059

2.459

0.17

0.17

0.033

0.33

0.033

0.067

3.333

1.667

1.667

3.333

1.667

3.333

0

0

0

0

0

57.8

62.6

75.8

81.3

63.5

73.8

29

26

46

12

29

10

105

111

125

146

109

192

0

0

0

0

0

0

0

0

0

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: 75181

Sample ID: LCS-75181-SVOC	SampType: LCS	TestCod	de: SVOC_SO	IL Units: mg/Kg		Prep Dat	te: 3/19/20 1	14	Run ID: SV	OC-5_140319)B	
Client ID: ZZZZZ	Batch ID: 75181	TestN	No: SW8270C			Analysis Da	ate: 3/19/20 1	14	SeqNo: 262	28859		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Phenol	1.983	0.17	3.333	0	59.5	27	104	0	0			
Pyrene	1.404	0.033	1.667	0	84.2	42	148	0	0			
1,2,4-Trichlorobenzene	1.085	0.17	1.667	0	65.1	55	106	0	0			
Sample ID: 14030492-008AMS	SampType: MS	TestCod	de: SVOC_SO	IL Units: mg/Kg	Prep Date: 3/19/2014				Run ID: SVOC-5_140319B			
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Da	ate: 3/19/20 1	14	SeqNo: 262	28888		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	1.203	0.033	1.665	0	72.2	24	139	0	0			
4-Chloro-3-methylphenol	2.165	0.33	3.329	0	65	28	121	0	0			
2-Chlorophenol	1.64	0.17	3.329	0	49.3	21	102	0	0			
1,4-Dichlorobenzene	0.8652	0.17	1.665	0	52	27	95	0	0			
2,4-Dinitrotoluene	1.151	0.033	1.665	0	69.1	32	127	0	0			
4-Nitrophenol	2.374	0.33	3.329	0	71.3	10	156	0	0			
N-Nitrosodi-n-propylamine	0.9258	0.033	1.665	0	55.6	16	122	0	0			
Pentachlorophenol	2.042	0.067	3.329	0	61.4	10	204	0	0			
Phenol	1.694	0.17	3.329	0	50.9	20	103	0	0			
Pyrene	1.231	0.033	1.665	0	74	10	184	0	0			
1,2,4-Trichlorobenzene	0.9344	0.17	1.665	0	56.1	55	106	0	0	-		
Sample ID: 14030492-008AMSD	SampType: MSD	TestCod	de: SVOC_SO	IL Units: mg/Kg		Prep Dat	te: 3/19/20 1	14	Run ID: SV	OC-5_140319	ЭВ	
Client ID: ZZZZZ	Batch ID: 75181	TestN	lo: SW8270C			Analysis Da	ate: 3/19/20 1	14	SeqNo: 262	28945		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	1.447	0.033	1.665	0	86.9	24	139	1.203	18.4	57		
4-Chloro-3-methylphenol	2.619	0.33	3.329	0	78.7	28	121	2.165	19.0	88		
2-Chlorophenol	2.328	0.17	3.329	0	69.9	21	102	1.64	34.7	49		
1,4-Dichlorobenzene	1.244	0.17	1.665	0	74.7	27	95	0.8652	35.9	43		
2,4-Dinitrotoluene	1.321	0.033	1.665	0	79.3	32	127	1.151	13.7	37		
4-Nitrophenol	2.667	0.33	3.329	0	80.1	10	156	2.374	11.6	56		
N-Nitrosodi-n-propylamine	1.263	0.033	1.665	0	75.8	16	122	0.9258	30.8	47		
O1:6 ND N-+ D-++	- d -4 d D d I i i4			D				D. A1				

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

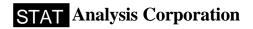
B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030589

ANALYTICAL QC SUMMARY REPORT


Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

3atch1D: 75181	BatchID:	75181
----------------	----------	-------

Sample ID: 14030492-008AMSD	SampType: MSD	TestCo	de: SVOC_SO	IL Units: mg/Kg		Prep Dat	e: 3/19/20	14	Run ID: SV	OC-5_140319	В
Client ID: ZZZZZ	Batch ID: 75181	TestN	TestNo: SW8270C Analysis Date: 3/19/2014			SeqNo: 2628945					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	2.343	0.067	3.329	0	70.4	10	204	2.042	13.7	47	
Phenol	2.312	0.17	3.329	0	69.5	20	103	1.694	30.8	66	
Pyrene	1.37	0.033	1.665	0	82.3	10	184	1.231	10.6	51	
1.2.4-Trichlorobenzene	1.318	0.17	1.665	0	79.2	55	106	0.9344	34.1	23	R

H/HT - Holding Time Exceeded

E - Value above quantitation range

PREP BATCH REPORT

Prep Start Date: 3/19/2014 8:40:40 A

Prep End Date:

Prep Factor Units:

Prep Batch 75178 Prep Code: 3580_TPH Technician: PEM mL/Kg

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75178-TPH			0.005	0	0	5	1000.000	3/19/2014	3/19/2014
LCS-75178-TPH			0.005	0	0	5	1000.000	3/19/2014	3/19/2014
14030549-001B	Soil		0.00512	0	0	5	976.562	3/19/2014	3/19/2014
14030549-001BMS	Soil		0.00512	0	0	5	976.562	3/19/2014	3/19/2014
14030549-001BMSD	Soil		0.00513	0	0	5	974.659	3/19/2014	3/19/2014
14030573-029B	Soil		0.00518	0	0	5	965.251	3/20/2014	3/20/2014
14030573-038B	Soil		0.00526	0	0	5	950.570	3/20/2014	3/20/2014
14030573-047B	Soil		0.00531	0	0	5	941.620	3/20/2014	3/20/2014
14030573-056B	Soil		0.00509	0	0	5	982.318	3/20/2014	3/20/2014
14030589-001B	Soil		0.00514	0	0	5	972.763	3/20/2014	3/20/2014
14030589-002B	Soil		0.00522	0	0	5	957.854	3/20/2014	3/20/2014
14030589-003B	Soil		0.00533	0	0	5	938.086	3/20/2014	3/20/2014
14030589-004B	Soil		0.00528	0	0	5	946.970	3/20/2014	3/20/2014

Work Order:

Project:

14030589

20405.012.005.2306.00, Buckeye Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: 75178

Sample ID: MB-75178-TPH	SampType: MBLK	TestCode	e: TPH_S	Units: mg/Kg		Prep Dat	e: 3/19/20	14	Run ID: GC	-FID-2_14031	19A
Client ID: ZZZZZ	Batch ID: 75178	TestNo	o: SW8015M			Analysis Da	te: 3/19/20	14	SeqNo: 262	8559	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (GRO)	ND	20									
TPH (DRO)	6.478	20									J
TPH (ERO)	ND	20									*
Sample ID: LCS-75178-TPH	SampType: LCS	TestCode	e: TPH_S	Units: mg/Kg		Prep Dat	e: 3/19/20	14	Run ID: GC	-FID-2_14031	19A
Client ID: ZZZZZ	Batch ID: 75178	TestNo	o: SW8015M			Analysis Da	te: 3/19/20	14	SeqNo: 262	8560	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
TPH (GRO)	93.6	20	200	0	46.8	30	150	0	0		
TPH (DRO)	103.8	20	200	6.478	48.7	30	150	0	0		
TPH (ERO)	172.8	20	200	0	86.4	30	150	0	0		*
Sample ID: 14030549-001BMS	SampType: MS	TestCode	e: TPH_S	Units: mg/Kg-c	dry	Prep Dat	e: 3/19/20	14	Run ID: GC	-FID-2_14031	19A
Client ID: ZZZZZ	Batch ID: 75178	TestNo	o: SW8015M			Analysis Da	te: 3/19/20	14	SeqNo: 262	8674	
Analyte								555 5 (V)			01
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte TPH (GRO)	Result 120.2	PQL 23	SPK value	SPK Ref Val 5.091	%REC 51.1	LowLimit 30	HighLimit 150	RPD Ref Val	%RPD 0	RPDLimit	Quai
TPH (GRO)										RPDLimit	Quai
TPH (GRO) TPH (DRO)	120.2	23	225	5.091	51.1	30	150	0	0	RPDLimit	Quai *
	120.2 132.8	23 23 23	225 225	5.091 8.493	51.1 55.2 103	30 30 30	150 150	0 0 0	0		*
TPH (GRO) TPH (DRO) TPH (ERO)	120.2 132.8 232.5	23 23 23 TestCode	225 225 225	5.091 8.493 0	51.1 55.2 103	30 30 30	150 150 150 e: 3/19/20	0 0 0	0 0 0	-FID-2_14031	*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: 14030549-001BMSD	120.2 132.8 232.5 SampType: MSD	23 23 23 TestCode	225 225 225 225	5.091 8.493 0	51.1 55.2 103	30 30 30 Prep Dat	150 150 150 150 te: 3/19/20	0 0 0	0 0 0 Run ID: GC	-FID-2_14031	*
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: 14030549-001BMSD Client ID: ZZZZZ	120.2 132.8 232.5 SampType: MSD Batch ID: 75178	23 23 23 TestCode TestNo	225 225 225 225 e: TPH_S o: SW8015M	5.091 8.493 0 Units: mg/Kg-c	51.1 55.2 103	30 30 30 30 Prep Dat Analysis Da	150 150 150 150 te: 3/19/20	0 0 0	0 0 0 Run ID: GC SeqNo: 262	-FID-2_14031 8689	* 19A
TPH (GRO) TPH (DRO) TPH (ERO) Sample ID: 14030549-001BMSD Client ID: 222222 Analyte	120.2 132.8 232.5 SampType: MSD Batch ID: 75178 Result	23 23 23 TestCode TestNo	225 225 225 225 e: TPH_S o: SW8015M SPK value	5.091 8.493 0 Units: mg/Kg-c	51.1 55.2 103 dry %REC	30 30 30 Prep Dat Analysis Da LowLimit	150 150 150 150 ee: 3/19/20 te: 3/19/20 HighLimit	0 0 0 14 14 RPD Ref Val	0 0 0 Run ID: GC : SeqNo: 262 %RPD	-FID-2_14031 8689 RPDLimit	* 19A

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030589

Project: 20405.012.005.2306.00, Buckeye Kankakee Spill

ANALYTICAL QC SUMMARY REPORT

BatchID: R97306

Sample ID: PMBLK 3/19/14	SampType: MBLK	TestCode: PMOIST	Units: wt%			3/19/2014			LANCE_1403	19B
Client ID: ZZZZZ	Batch ID: R97306	TestNo: D2974			Analysis Date	e: 3/20/2014	ļ	SeqNo: 262	9281	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture	ND	0.200								*
Sample ID: PMLCS-S 3/19/14	SampType: LCS	TestCode: PMOIST	Units: wt%		Prep Date	: 3/19/2014	1	Run ID: BA	LANCE_1403	19B
Client ID: ZZZZZ	Batch ID: R97306	TestNo: D2974			Analysis Date	e: 3/20/201 4	1	SeqNo: 262	9282	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture	4.98	0.200 5	0	99.6	80	120	0	0		*
Sample ID: PMLCS-W 3/19/14	SampType: LCS	TestCode: PMOIST	Units: wt%		Prep Date	: 3/19/2014	1	Run ID: BA	LANCE_1403	19B
Sample ID: PMLCS-W 3/19/14 Client ID: ZZZZZ	SampType: LCS Batch ID: R97306	TestCode: PMOIST TestNo: D2974	Units: wt%		Prep Date Analysis Date			Run ID: BA SeqNo: 262		:19B
	. ,,			%REC	Analysis Date	e: 3/20/201 4				a19B Qual
Client ID: ZZZZZ	Batch ID: R97306	TestNo: D2974		%REC 100	Analysis Date	e: 3/20/201 4	1	SeqNo: 262	29283	
Client ID: ZZZZZ Analyte	Batch ID: R97306 Result	TestNo: D2974 PQL SPK value	SPK Ref Val		Analysis Date LowLimit 80	e: 3/20/201 4 HighLimit	RPD Ref Val	SeqNo: 262 %RPD 0	29283	Qual *
Client ID: ZZZZZ Analyte Percent Moisture	Batch ID: R97306 Result 99.79	TestNo: D2974 PQL SPK value 0.200 99.8	SPK Ref Val	100	Analysis Date LowLimit 80	e: 3/20/2014 HighLimit 120 : 3/19/2014	RPD Ref Val	SeqNo: 262 %RPD 0	RPDLimit LANCE_1403	Qual *
Client ID: ZZZZZ Analyte Percent Moisture Sample ID: 14030492-009B DUP	Batch ID: R97306 Result 99.79 SampType: DUP	TestNo: D2974 PQL SPK value 0.200 99.8 TestCode: PMOIST	SPK Ref Val	100	Analysis Date LowLimit 80 Prep Date Analysis Date	e: 3/20/2014 HighLimit 120 : 3/19/2014 e: 3/20/2014	RPD Ref Val	SeqNo: 262 %RPD 0 Run ID: BA	RPDLimit LANCE_1403	Qual *

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

March 24, 2014

Weston Solutions 20 North Wacker Drive Chicago, IL 60606

Fax:

Telephone: (312) 424-3339 (312) 424-3330

Analytical Report for STAT Workorder: 14030659 Revision 0

RE: 20405.012.005.2306.00, BKG, Kankakee, IL

Dear Lisa Graczyk:

STAT Analysis received 5 samples for the referenced project on 3/21/2014 1:40:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely.

Thomas M. Bauer

General Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: March 24, 2014

Client: Weston Solutions

Project: 20405.012.005.2306.00, BKG, Kankakee, IL Work Order Sample Summary

Lab Order: 14030659

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
14030659-001A	1525 Hawkins		3/20/2014 11:00:00 AM	3/21/2014
14030659-001B	1525 Hawkins		3/20/2014 11:00:00 AM	3/21/2014
14030659-002A	1756 IL-113		3/20/2014 11:30:00 AM	3/21/2014
14030659-002B	1756 IL-113		3/20/2014 11:30:00 AM	3/21/2014
14030659-003A	BKG-Summa-N-032114		3/21/2014	3/21/2014
14030659-004A	BKG-Summa-W-032114		3/21/2014	3/21/2014
14030659-005A	BKG-Summa-E-032114		3/21/2014	3/21/2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014 **Print Date:** March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: 1525 Hawkins

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/20/2014 11:00:00 AM

Lab ID: 14030659-001A **Matrix:** Water

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	60B (SW5030B)	Prep	Date:	Analyst: ERP
Acetone	ND	0.02	mg/L	1	3/22/2014
Benzene	ND	0.005	mg/L	1	3/22/2014
Bromodichloromethane	ND	0.005	mg/L	1	3/22/2014
Bromoform	ND	0.005	mg/L	1	3/22/2014
Bromomethane	ND	0.01	mg/L	1	3/22/2014
2-Butanone	ND	0.02	mg/L	1	3/22/2014
Carbon disulfide	ND	0.01	mg/L	1	3/22/2014
Carbon tetrachloride	ND	0.005	mg/L	1	3/22/2014
Chlorobenzene	ND	0.005	mg/L	1	3/22/2014
Chloroethane	ND	0.01	mg/L	1	3/22/2014
Chloroform	ND	0.005	mg/L	1	3/22/2014
Chloromethane	ND	0.01	mg/L	1	3/22/2014
Dibromochloromethane	ND	0.005	mg/L	1	3/22/2014
1,1-Dichloroethane	ND	0.005	mg/L	1	3/22/2014
1,2-Dichloroethane	ND	0.005	mg/L	1	3/22/2014
1,1-Dichloroethene	ND	0.005	mg/L	1	3/22/2014
cis-1,2-Dichloroethene	ND	0.005	mg/L	1	3/22/2014
trans-1,2-Dichloroethene	ND	0.005	mg/L	1	3/22/2014
1,2-Dichloropropane	ND	0.005	mg/L	1	3/22/2014
cis-1,3-Dichloropropene	ND	0.001	mg/L	1	3/22/2014
trans-1,3-Dichloropropene	ND	0.001	mg/L	1	3/22/2014
Ethylbenzene	ND	0.005	mg/L	1	3/22/2014
2-Hexanone	ND	0.02	mg/L	1	3/22/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/22/2014
Methylene chloride	ND	0.005	mg/L	1	3/22/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/22/2014
Styrene	ND	0.005	mg/L	1	3/22/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/22/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/22/2014
Toluene	ND	0.005	mg/L	1	3/22/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/22/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/22/2014
Trichloroethene	ND	0.005	mg/L	1	3/22/2014
Vinyl chloride	ND	0.002	mg/L	1	3/22/2014
Xylenes, Total	ND	0.015	mg/L	1	3/22/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: 1525 Hawkins

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/20/2014 11:00:00 AM

Lab ID: 14030659-001B **Matrix:** Water

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3510C)	Pre	p Date: 3/24/201	4 Analyst: MEP
Acenaphthene	ND	0.001		mg/L	1	3/24/2014
Acenaphthylene	ND	0.001		mg/L	1	3/24/2014
Anthracene	ND	0.001		mg/L	1	3/24/2014
Benz(a)anthracene	ND	0.0001		mg/L	1	3/24/2014
Benzo(a)pyrene	ND	0.0001		mg/L	1	3/24/2014
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	3/24/2014
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	3/24/2014
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	3/24/2014
Chrysene	ND	0.0001		mg/L	1	3/24/2014
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	3/24/2014
Fluoranthene	ND	0.001		mg/L	1	3/24/2014
Fluorene	ND	0.001		mg/L	1	3/24/2014
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	3/24/2014
Naphthalene	ND	0.001		mg/L	1	3/24/2014
Phenanthrene	ND	0.001		mg/L	1	3/24/2014
Pyrene	ND	0.001		mg/L	1	3/24/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014 **Print Date:** March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: 1756 IL-113

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/20/2014 11:30:00 AM

Lab ID: 14030659-002A **Matrix:** Water

Analyses	Result	RL Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	60B (SW5030B)	Prep	Date:	Analyst: ERP
Acetone	ND	0.02	mg/L	1	3/22/2014
Benzene	ND	0.005	mg/L	1	3/22/2014
Bromodichloromethane	ND	0.005	mg/L	1	3/22/2014
Bromoform	ND	0.005	mg/L	1	3/22/2014
Bromomethane	ND	0.01	mg/L	1	3/22/2014
2-Butanone	ND	0.02	mg/L	1	3/22/2014
Carbon disulfide	ND	0.01	mg/L	1	3/22/2014
Carbon tetrachloride	ND	0.005	mg/L	1	3/22/2014
Chlorobenzene	ND	0.005	mg/L	1	3/22/2014
Chloroethane	ND	0.01	mg/L	1	3/22/2014
Chloroform	ND	0.005	mg/L	1	3/22/2014
Chloromethane	ND	0.01	mg/L	1	3/22/2014
Dibromochloromethane	ND	0.005	mg/L	1	3/22/2014
1,1-Dichloroethane	ND	0.005	mg/L	1	3/22/2014
1,2-Dichloroethane	ND	0.005	mg/L	1	3/22/2014
1,1-Dichloroethene	ND	0.005	mg/L	1	3/22/2014
cis-1,2-Dichloroethene	ND	0.005	mg/L	1	3/22/2014
trans-1,2-Dichloroethene	ND	0.005	mg/L	1	3/22/2014
1,2-Dichloropropane	ND	0.005	mg/L	1	3/22/2014
cis-1,3-Dichloropropene	ND	0.001	mg/L	1	3/22/2014
trans-1,3-Dichloropropene	ND	0.001	mg/L	1	3/22/2014
Ethylbenzene	ND	0.005	mg/L	1	3/22/2014
2-Hexanone	ND	0.02	mg/L	1	3/22/2014
4-Methyl-2-pentanone	ND	0.02	mg/L	1	3/22/2014
Methylene chloride	ND	0.005	mg/L	1	3/22/2014
Methyl tert-butyl ether	ND	0.005	mg/L	1	3/22/2014
Styrene	ND	0.005	mg/L	1	3/22/2014
1,1,2,2-Tetrachloroethane	ND	0.005	mg/L	1	3/22/2014
Tetrachloroethene	ND	0.005	mg/L	1	3/22/2014
Toluene	ND	0.005	mg/L	1	3/22/2014
1,1,1-Trichloroethane	ND	0.005	mg/L	1	3/22/2014
1,1,2-Trichloroethane	ND	0.005	mg/L	1	3/22/2014
Trichloroethene	ND	0.005	mg/L	1	3/22/2014
Vinyl chloride	ND	0.002	mg/L	1	3/22/2014
Xylenes, Total	ND	0.015	mg/L	1	3/22/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: 1756 IL-113

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/20/2014 11:30:00 AM

Lab ID: 14030659-002B **Matrix:** Water

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3510C)	Pre	ep Date: 3/24/201 /	4 Analyst: MEP
Acenaphthene	ND	0.001		mg/L	1	3/24/2014
Acenaphthylene	ND	0.001		mg/L	1	3/24/2014
Anthracene	ND	0.001		mg/L	1	3/24/2014
Benz(a)anthracene	ND	0.0001		mg/L	1	3/24/2014
Benzo(a)pyrene	ND	0.0001		mg/L	1	3/24/2014
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	3/24/2014
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	3/24/2014
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	3/24/2014
Chrysene	ND	0.0001		mg/L	1	3/24/2014
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	3/24/2014
Fluoranthene	ND	0.001		mg/L	1	3/24/2014
Fluorene	ND	0.001		mg/L	1	3/24/2014
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	3/24/2014
Naphthalene	ND	0.001		mg/L	1	3/24/2014
Phenanthrene	ND	0.001		mg/L	1	3/24/2014
Pyrene	ND	0.001		mg/L	1	3/24/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	Date: 3/21/201	4 Analyst: VP
1,1,1-Trichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	0.35		ppbv	1	3/21/2014
1,1,2-Trichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dibromoethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloropropane	ND	0.35		ppbv	1	3/21/2014
1,3,5-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,3-Butadiene	ND	0.35		ppbv	1	3/21/2014
1,3-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dioxane	ND	0.89		ppbv	1	3/21/2014
2-Butanone	ND	0.89		ppbv	1	3/21/2014
2-Hexanone	ND	1.8		ppbv	1	3/21/2014
4-Ethyltoluene	ND	0.35		ppbv	1	3/21/2014
4-Methyl-2-pentanone	ND	1.8		ppbv	1	3/21/2014
Acetone	ND	3.5	*	ppbv	1	3/21/2014
Benzene	ND	0.35		ppbv	1	3/21/2014
Benzyl chloride	ND	0.89		ppbv	1	3/21/2014
Bromodichloromethane	ND	0.35		ppbv	1	3/21/2014
Bromoform	ND	0.89		ppbv	1	3/21/2014
Bromomethane	ND	0.89		ppbv	1	3/21/2014
Carbon disulfide	ND	0.35		ppbv	1	3/21/2014
Carbon tetrachloride	ND	0.35		ppbv	1	3/21/2014
Chlorobenzene	ND	0.35		ppbv	1	3/21/2014
Chloroethane	ND	0.35		ppbv	1	3/21/2014
Chloroform	ND	0.35		ppbv	1	3/21/2014
Chloromethane	ND	0.89		ppbv	1	3/21/2014
cis-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
cis-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Cyclohexane	ND	0.35		ppbv	1	3/21/2014
Dibromochloromethane	ND	0.35		ppbv	1	3/21/2014
Dichlorodifluoromethane	0.46	0.35		ppbv	1	3/21/2014
Ethyl acetate	ND	0.35		ppbv	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
Ethylbenzene	ND	0.35		ppbv	1	3/21/2014
Freon-113	ND	0.35		ppbv	1	3/21/2014
Freon-114	ND	1.8		ppbv	1	3/21/2014
Heptane	ND	0.35		ppbv	1	3/21/2014
Hexachlorobutadiene	ND	0.35		ppbv	1	3/21/2014
Hexane	ND	0.89		ppbv	1	3/21/2014
Isopropyl Alcohol	ND	1.8		ppbv	1	3/21/2014
m,p-Xylene	ND	0.71		ppbv	1	3/21/2014
Methyl tert-butyl ether	ND	0.35		ppbv	1	3/21/2014
Methylene chloride	ND	3.5		ppbv	1	3/21/2014
o-Xylene	ND	0.35		ppbv	1	3/21/2014
Propene	ND	3.5		ppbv	1	3/21/2014
Styrene	ND	0.35		ppbv	1	3/21/2014
Tetrachloroethene	ND	0.35		ppbv	1	3/21/2014
Tetrahydrofuran	ND	0.89		ppbv	1	3/21/2014
Toluene	0.39	0.35		ppbv	1	3/21/2014
trans-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
trans-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Trichloroethene	ND	0.35		ppbv	1	3/21/2014
Trichlorofluoromethane	ND	0.35		ppbv	1	3/21/2014
Vinyl acetate	ND	3.5		ppbv	1	3/21/2014
Vinyl chloride	ND	0.35		ppbv	1	3/21/2014
Xylenes, Total	ND	1.1		ppbv	1	3/21/2014
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
1,1,1-Trichloroethane	ND	2		μg/m³	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	2.5		µg/m³	1	3/21/2014
1,1,2-Trichloroethane	ND	2		μg/m³	1	3/21/2014
1,1-Dichloroethane	ND	1.4		µg/m³	1	3/21/2014
1,1-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
1,2,4-Trichlorobenzene	ND	2.7		µg/m³	1	3/21/2014
1,2,4-Trimethylbenzene	ND	1.8		μg/m³	1	3/21/2014
1,2-Dibromoethane	ND	2.7		μg/m³	1	3/21/2014
1,2-Dichlorobenzene	ND	2.1		μg/m³	1	3/21/2014
1,2-Dichloroethane	ND	1.4		μg/m³	1	3/21/2014
1,2-Dichloropropane	ND	1.6		μg/m³	1	3/21/2014
1,3,5-Trimethylbenzene	ND	1.8		μg/m³	1	3/21/2014
1,3-Butadiene	ND	0.71		μg/m³	1	3/21/2014
1,3-Dichlorobenzene	ND	2.1		μg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

K - KI D outside accepted recovery mint

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

ANALYTICAL RESULTS

Print Date: March 24, 2014

Client: Weston Solutions Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/20	114 Analyst: VP
1,4-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014
1,4-Dioxane	ND	3.2		μg/m³	1	3/21/2014
2-Butanone	ND	2.7		µg/m³	1	3/21/2014
2-Hexanone	ND	7.3		µg/m³	1	3/21/2014
4-Ethyltoluene	ND	1.8		µg/m³	1	3/21/2014
4-Methyl-2-pentanone	ND	7.3		µg/m³	1	3/21/2014
Acetone	ND	8.5	*	µg/m³	1	3/21/2014
Benzene	ND	1.1		µg/m³	1	3/21/2014
Benzyl chloride	ND	4.6		µg/m³	1	3/21/2014
Bromodichloromethane	ND	2.3		µg/m³	1	3/21/2014
Bromoform	ND	9.2		µg/m³	1	3/21/2014
Bromomethane	ND	3.4		µg/m³	1	3/21/2014
Carbon disulfide	ND	1.1		µg/m³	1	3/21/2014
Carbon tetrachloride	ND	2.3		µg/m³	1	3/21/2014
Chlorobenzene	ND	1.6		µg/m³	1	3/21/2014
Chloroethane	ND	0.89		µg/m³	1	3/21/2014
Chloroform	ND	1.8		µg/m³	1	3/21/2014
Chloromethane	ND	1.8		µg/m³	1	3/21/2014
cis-1,2-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
cis-1,3-Dichloropropene	ND	1.6		µg/m³	1	3/21/2014
Cyclohexane	ND	1.2		µg/m³	1	3/21/2014
Dibromochloromethane	ND	3		µg/m³	1	3/21/2014
Dichlorodifluoromethane	2.3	1.8		µg/m³	1	3/21/2014
Ethyl acetate	ND	1.2		µg/m³	1	3/21/2014
Ethylbenzene	ND	1.6		µg/m³	1	3/21/2014
Freon-113	ND	2.7		µg/m³	1	3/21/2014
Freon-114	ND	12		μg/m³	1	3/21/2014
Heptane	ND	1.4		μg/m³	1	3/21/2014
Hexachlorobutadiene	ND	3.7		μg/m³	1	3/21/2014
Hexane	ND	3.2		μg/m³	1	3/21/2014
Isopropyl Alcohol	ND	4.4		μg/m³	1	3/21/2014
m,p-Xylene	ND	3		μg/m³	1	3/21/2014
Methyl tert-butyl ether	ND	1.2		μg/m³	1	3/21/2014
Methylene chloride	ND	12		μg/m³	1	3/21/2014
o-Xylene	ND	1.6		μg/m³	1	3/21/2014
Propene	ND	6		µg/m³	1	3/21/2014
Styrene	ND	1.6		µg/m³	1	3/21/2014
Tetrachloroethene	ND	2.5		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

K - KI D outside accepted recovery mint

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014 **Print Date:** March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions

Chefit Sample ID: BK

Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

Collection Date: 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/201 4	4 Analyst: VP
Tetrahydrofuran	ND	2.7		µg/m³	1	3/21/2014
Toluene	1.5	1.4		µg/m³	1	3/21/2014
trans-1,2-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
trans-1,3-Dichloropropene	ND	1.6		µg/m³	1	3/21/2014
Trichloroethene	ND	2		µg/m³	1	3/21/2014
Trichlorofluoromethane	ND	2		µg/m³	1	3/21/2014
Vinyl acetate	ND	12		µg/m³	1	3/21/2014
Vinyl chloride	ND	0.89		µg/m³	1	3/21/2014
Xylenes, Total	ND	4.6		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions

March 24, 2014

Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-004A **Matrix:** Air

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
1,1,1-Trichloroethane	ND	0.38		ppbv .	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	0.38		ppbv	1	3/21/2014
1,1,2-Trichloroethane	ND	0.38		ppbv	1	3/21/2014
1,1-Dichloroethane	ND	0.38		ppbv	1	3/21/2014
1,1-Dichloroethene	ND	0.38		ppbv	1	3/21/2014
1,2,4-Trichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,2,4-Trimethylbenzene	ND	0.38		ppbv	1	3/21/2014
1,2-Dibromoethane	ND	0.38		ppbv	1	3/21/2014
1,2-Dichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,2-Dichloroethane	ND	0.38		ppbv	1	3/21/2014
1,2-Dichloropropane	ND	0.38		ppbv	1	3/21/2014
1,3,5-Trimethylbenzene	ND	0.38		ppbv	1	3/21/2014
1,3-Butadiene	ND	0.38		ppbv	1	3/21/2014
1,3-Dichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,4-Dichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,4-Dioxane	ND	0.96		ppbv	1	3/21/2014
2-Butanone	ND	0.96		ppbv	1	3/21/2014
2-Hexanone	ND	1.9		ppbv	1	3/21/2014
4-Ethyltoluene	ND	0.38		ppbv	1	3/21/2014
4-Methyl-2-pentanone	ND	1.9		ppbv	1	3/21/2014
Acetone	ND	3.8	*	ppbv	1	3/21/2014
Benzene	ND	0.38		ppbv	1	3/21/2014
Benzyl chloride	ND	0.96		ppbv	1	3/21/2014
Bromodichloromethane	ND	0.38		ppbv	1	3/21/2014
Bromoform	ND	0.96		ppbv	1	3/21/2014
Bromomethane	ND	0.96		ppbv	1	3/21/2014
Carbon disulfide	ND	0.38		ppbv	1	3/21/2014
Carbon tetrachloride	ND	0.38		ppbv	1	3/21/2014
Chlorobenzene	ND	0.38		ppbv	1	3/21/2014
Chloroethane	ND	0.38		ppbv	1	3/21/2014
Chloroform	ND	0.38		ppbv	1	3/21/2014
Chloromethane	ND	0.96		ppbv	1	3/21/2014
cis-1,2-Dichloroethene	ND	0.38		ppbv	1	3/21/2014
cis-1,3-Dichloropropene	ND	0.38		ppbv	1	3/21/2014
Cyclohexane	ND	0.38		ppbv	1	3/21/2014
Dibromochloromethane	ND	0.38		ppbv	1	3/21/2014
Dichlorodifluoromethane	0.44	0.38		ppbv	1	3/21/2014
Ethyl acetate	ND	0.38		ppbv	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions

March 24, 2014

Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-004A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/201 4	Analyst: VP
Ethylbenzene	ND	0.38		ppbv	1	3/21/2014
Freon-113	ND	0.38		ppbv	1	3/21/2014
Freon-114	ND	1.9		ppbv	1	3/21/2014
Heptane	ND	0.38		ppbv	1	3/21/2014
Hexachlorobutadiene	ND	0.38		ppbv	1	3/21/2014
Hexane	ND	0.96		ppbv	1	3/21/2014
Isopropyl Alcohol	ND	1.9		ppbv	1	3/21/2014
m,p-Xylene	ND	0.76		ppbv	1	3/21/2014
Methyl tert-butyl ether	ND	0.38		ppbv	1	3/21/2014
Methylene chloride	ND	3.8		ppbv	1	3/21/2014
o-Xylene	ND	0.38		ppbv	1	3/21/2014
Propene	ND	3.8		ppbv	1	3/21/2014
Styrene	ND	0.38		ppbv	1	3/21/2014
Tetrachloroethene	ND	0.38		ppbv	1	3/21/2014
Tetrahydrofuran	ND	0.96		ppbv	1	3/21/2014
Toluene	0.38	0.38		ppbv	1	3/21/2014
trans-1,2-Dichloroethene	ND	0.38		ppbv	1	3/21/2014
trans-1,3-Dichloropropene	ND	0.38		ppbv	1	3/21/2014
Trichloroethene	ND	0.38		ppbv	1	3/21/2014
Trichlorofluoromethane	ND	0.38		ppbv	1	3/21/2014
Vinyl acetate	ND	3.8		ppbv	1	3/21/2014
Vinyl chloride	ND	0.38		ppbv	1	3/21/2014
Xylenes, Total	ND	1.1		ppbv	1	3/21/2014
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/201 4	Analyst: VP
1,1,1-Trichloroethane	ND	2.1		µg/m³	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	2.7		μg/m³	1	3/21/2014
1,1,2-Trichloroethane	ND	2.1		µg/m³	1	3/21/2014
1,1-Dichloroethane	ND	1.5		μg/m³	1	3/21/2014
1,1-Dichloroethene	ND	1.5		μg/m³	1	3/21/2014
1,2,4-Trichlorobenzene	ND	2.9		µg/m³	1	3/21/2014
1,2,4-Trimethylbenzene	ND	1.9		µg/m³	1	3/21/2014
1,2-Dibromoethane	ND	2.9		µg/m³	1	3/21/2014
1,2-Dichlorobenzene	ND	2.3		µg/m³	1	3/21/2014
1,2-Dichloroethane	ND	1.5		µg/m³	1	3/21/2014
1,2-Dichloropropane	ND	1.7		μg/m³	1	3/21/2014
1,3,5-Trimethylbenzene	ND	1.9		µg/m³	1	3/21/2014
1,3-Butadiene	ND	0.76		µg/m³	1	3/21/2014
1,3-Dichlorobenzene	ND	2.3		μg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

12 of 45

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

ANALYTICAL RESULTS

Print Date: March 24, 2014

Client: Weston Solutions Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-004A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/2 0	014 Analyst: VP
1,4-Dichlorobenzene	ND	2.3		µg/m³	1	3/21/2014
1,4-Dioxane	ND	3.4		µg/m³	1	3/21/2014
2-Butanone	ND	2.9		μg/m³	1	3/21/2014
2-Hexanone	ND	7.8		µg/m³	1	3/21/2014
4-Ethyltoluene	ND	1.9		µg/m³	1	3/21/2014
4-Methyl-2-pentanone	ND	7.8		µg/m³	1	3/21/2014
Acetone	ND	9.2	*	µg/m³	1	3/21/2014
Benzene	ND	1.1		µg/m³	1	3/21/2014
Benzyl chloride	ND	5		µg/m³	1	3/21/2014
Bromodichloromethane	ND	2.5		µg/m³	1	3/21/2014
Bromoform	ND	9.9		µg/m³	1	3/21/2014
Bromomethane	ND	3.6		µg/m³	1	3/21/2014
Carbon disulfide	ND	1.2		µg/m³	1	3/21/2014
Carbon tetrachloride	ND	2.5		µg/m³	1	3/21/2014
Chlorobenzene	ND	1.7		µg/m³	1	3/21/2014
Chloroethane	ND	0.96		µg/m³	1	3/21/2014
Chloroform	ND	1.9		µg/m³	1	3/21/2014
Chloromethane	ND	1.9		µg/m³	1	3/21/2014
cis-1,2-Dichloroethene	ND	1.5		µg/m³	1	3/21/2014
cis-1,3-Dichloropropene	ND	1.7		µg/m³	1	3/21/2014
Cyclohexane	ND	1.3		µg/m³	1	3/21/2014
Dibromochloromethane	ND	3.2		µg/m³	1	3/21/2014
Dichlorodifluoromethane	2.2	1.9		µg/m³	1	3/21/2014
Ethyl acetate	ND	1.3		µg/m³	1	3/21/2014
Ethylbenzene	ND	1.7		µg/m³	1	3/21/2014
Freon-113	ND	2.9		µg/m³	1	3/21/2014
Freon-114	ND	13		µg/m³	1	3/21/2014
Heptane	ND	1.5		µg/m³	1	3/21/2014
Hexachlorobutadiene	ND	4		µg/m³	1	3/21/2014
Hexane	ND	3.4		μg/m³	1	3/21/2014
Isopropyl Alcohol	ND	4.8		μg/m³	1	3/21/2014
m,p-Xylene	ND	3.2		μg/m³	1	3/21/2014
Methyl tert-butyl ether	ND	1.3		μg/m³	1	3/21/2014
Methylene chloride	ND	13		μg/m³	1	3/21/2014
o-Xylene	ND	1.7		μg/m³	1	3/21/2014
Propene	ND	6.5		µg/m³	1	3/21/2014
Styrene	ND	1.7		µg/m³	1	3/21/2014
Tetrachloroethene	ND	2.7		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions

Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659

Print Date:

Lab ID:

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

March 24, 2014

Collection Date: 3/21/2014

14030659-004A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	o Date: 3/21/20 1	4 Analyst: VP
Tetrahydrofuran	ND	2.9		µg/m³	1	3/21/2014
Toluene	1.4	1.3		µg/m³	1	3/21/2014
trans-1,2-Dichloroethene	ND	1.5		µg/m³	1	3/21/2014
trans-1,3-Dichloropropene	ND	1.7		µg/m³	1	3/21/2014
Trichloroethene	ND	2.1		µg/m³	1	3/21/2014
Trichlorofluoromethane	ND	2.1		µg/m³	1	3/21/2014
Vinyl acetate	ND	13		µg/m³	1	3/21/2014
Vinyl chloride	ND	0.96		µg/m³	1	3/21/2014
Xylenes, Total	ND	5		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

March 24, 2014

Client: Weston Solutions Client Sample ID: BKG-Summa-E-032114

Lab Order: 14030659 Tag Number:

Collection Date: 3/21/2014 **Project:** 20405.012.005.2306.00, BKG, Kankakee, IL

Lab ID: Matrix: Air 14030659-005A

Analyses	Result	RL Qu	alifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/201 4	Analyst: VP
1,1,1-Trichloroethane	ND	0.35		ppbv .	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	0.35		ppbv	1	3/21/2014
1,1,2-Trichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dibromoethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloropropane	ND	0.35		ppbv	1	3/21/2014
1,3,5-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,3-Butadiene	ND	0.35		ppbv	1	3/21/2014
1,3-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dioxane	ND	0.88		ppbv	1	3/21/2014
2-Butanone	ND	0.88		ppbv	1	3/21/2014
2-Hexanone	ND	1.8		ppbv	1	3/21/2014
4-Ethyltoluene	ND	0.35		ppbv	1	3/21/2014
4-Methyl-2-pentanone	ND	1.8		ppbv	1	3/21/2014
Acetone	ND	3.5	*	ppbv	1	3/21/2014
Benzene	ND	0.35		ppbv	1	3/21/2014
Benzyl chloride	ND	0.88		ppbv	1	3/21/2014
Bromodichloromethane	ND	0.35		ppbv	1	3/21/2014
Bromoform	ND	0.88		ppbv	1	3/21/2014
Bromomethane	ND	0.88		ppbv	1	3/21/2014
Carbon disulfide	ND	0.35		ppbv	1	3/21/2014
Carbon tetrachloride	ND	0.35		ppbv	1	3/21/2014
Chlorobenzene	ND	0.35		ppbv	1	3/21/2014
Chloroethane	ND	0.35		ppbv	1	3/21/2014
Chloroform	ND	0.35		ppbv	1	3/21/2014
Chloromethane	ND	0.88		ppbv	1	3/21/2014
cis-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
cis-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Cyclohexane	ND	0.35		ppbv	1	3/21/2014
Dibromochloromethane	ND	0.35		ppbv	1	3/21/2014
Dichlorodifluoromethane	0.44	0.35		ppbv	1	3/21/2014
Ethyl acetate	ND	0.35		ppbv	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

Lab Order:

ANALYTICAL RESULTS

Client: Weston Solutions

Client Sample ID: BKG-Summa-E-032114

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

March 24, 2014

14030659

Matrix: Air

Collection Date: 3/21/2014

Lab ID: 14030659-005A

Analyses	Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	Date: 3/21/2014	Analyst: VP
Ethylbenzene	ND	0.35		ppbv	1	3/21/2014
Freon-113	ND	0.35		ppbv	1	3/21/2014
Freon-114	ND	1.8		ppbv	1	3/21/2014
Heptane	ND	0.35		ppbv	1	3/21/2014
Hexachlorobutadiene	ND	0.35		ppbv	1	3/21/2014
Hexane	ND	0.88		ppbv	1	3/21/2014
Isopropyl Alcohol	ND	1.8		ppbv	1	3/21/2014
m,p-Xylene	ND	0.7		ppbv	1	3/21/2014
Methyl tert-butyl ether	ND	0.35		ppbv	1	3/21/2014
Methylene chloride	ND	3.5		ppbv	1	3/21/2014
o-Xylene	ND	0.35		ppbv	1	3/21/2014
Propene	ND	3.5		ppbv	1	3/21/2014
Styrene	ND	0.35		ppbv	1	3/21/2014
Tetrachloroethene	ND	0.35		ppbv	1	3/21/2014
Tetrahydrofuran	ND	0.88		ppbv	1	3/21/2014
Toluene	0.42	0.35		ppbv	1	3/21/2014
trans-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
trans-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Trichloroethene	ND	0.35		ppbv	1	3/21/2014
Trichlorofluoromethane	ND	0.35		ppbv	1	3/21/2014
Vinyl acetate	ND	3.5		ppbv	1	3/21/2014
Vinyl chloride	ND	0.35		ppbv	1	3/21/2014
Xylenes, Total	ND	1.1		ppbv	1	3/21/2014
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
1,1,1-Trichloroethane	ND	1.9		µg/m³	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	2.5		µg/m³	1	3/21/2014
1,1,2-Trichloroethane	ND	1.9		µg/m³	1	3/21/2014
1,1-Dichloroethane	ND	1.4		µg/m³	1	3/21/2014
1,1-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
1,2,4-Trichlorobenzene	ND	2.6		µg/m³	1	3/21/2014
1,2,4-Trimethylbenzene	ND	1.8		µg/m³	1	3/21/2014
1,2-Dibromoethane	ND	2.6		µg/m³	1	3/21/2014
1,2-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014
1,2-Dichloroethane	ND	1.4		µg/m³	1	3/21/2014
1,2-Dichloropropane	ND	1.6		µg/m³	1	3/21/2014
1,3,5-Trimethylbenzene	ND	1.8		µg/m³	1	3/21/2014
1,3-Butadiene	ND	0.7		µg/m³	1	3/21/2014
1,3-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: BKG-Summa-E-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-005A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/20	14 Analyst: VP
1,4-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014
1,4-Dioxane	ND	3.2		µg/m³	1	3/21/2014
2-Butanone	ND	2.6		µg/m³	1	3/21/2014
2-Hexanone	ND	7.2		µg/m³	1	3/21/2014
4-Ethyltoluene	ND	1.8		μg/m³	1	3/21/2014
4-Methyl-2-pentanone	ND	7.2		µg/m³	1	3/21/2014
Acetone	ND	8.5	*	µg/m³	1	3/21/2014
Benzene	ND	1.1		µg/m³	1	3/21/2014
Benzyl chloride	ND	4.6		µg/m³	1	3/21/2014
Bromodichloromethane	ND	2.3		µg/m³	1	3/21/2014
Bromoform	ND	9.2		μg/m³	1	3/21/2014
Bromomethane	ND	3.3		μg/m³	1	3/21/2014
Carbon disulfide	ND	1.1		μg/m³	1	3/21/2014
Carbon tetrachloride	ND	2.3		μg/m³	1	3/21/2014
Chlorobenzene	ND	1.6		μg/m³	1	3/21/2014
Chloroethane	ND	0.88		μg/m³	1	3/21/2014
Chloroform	ND	1.8		μg/m³	1	3/21/2014
Chloromethane	ND	1.8		μg/m³	1	3/21/2014
cis-1,2-Dichloroethene	ND	1.4		μg/m³	1	3/21/2014
cis-1,3-Dichloropropene	ND	1.6		μg/m³	1	3/21/2014
Cyclohexane	ND	1.2		μg/m³	1	3/21/2014
Dibromochloromethane	ND	3		μg/m³	1	3/21/2014
Dichlorodifluoromethane	2.2	1.8		μg/m³	1	3/21/2014
Ethyl acetate	ND	1.2		μg/m³	1	3/21/2014
Ethylbenzene	ND	1.6		μg/m³	1	3/21/2014
Freon-113	ND	2.6		μg/m³	1	3/21/2014
Freon-114	ND	12		μg/m³	1	3/21/2014
Heptane	ND	1.4		µg/m³	1	3/21/2014
Hexachlorobutadiene	ND	3.7		µg/m³	1	3/21/2014
Hexane	ND	3.2		µg/m³	1	3/21/2014
Isopropyl Alcohol	ND	4.4		µg/m³	1	3/21/2014
m,p-Xylene	ND	3		µg/m³	1	3/21/2014
Methyl tert-butyl ether	ND	1.2		µg/m³	1	3/21/2014
Methylene chloride	ND	12		µg/m³	1	3/21/2014
o-Xylene	ND	1.6		µg/m³	1	3/21/2014
Propene	ND	6		µg/m³	1	3/21/2014
Styrene	ND	1.6		µg/m³	1	3/21/2014
Tetrachloroethene	ND	2.5		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014 **Print Date:** March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions

Client Sample ID: BKG-Summa-E-032114

Lab Order: 14030659

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

Collection Date: 3/21/2014

Lab ID: 14030659-005A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Γ	Oate Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	o Date: 3/21/2	014	Analyst: VP
Tetrahydrofuran	ND	2.6		µg/m³	1		3/21/2014
Toluene	1.6	1.4		µg/m³	1		3/21/2014
trans-1,2-Dichloroethene	ND	1.4		µg/m³	1		3/21/2014
trans-1,3-Dichloropropene	ND	1.6		µg/m³	1		3/21/2014
Trichloroethene	ND	1.9		µg/m³	1		3/21/2014
Trichlorofluoromethane	ND	1.9		µg/m³	1		3/21/2014
Vinyl acetate	ND	12		µg/m³	1		3/21/2014
Vinyl chloride	ND	0.88		μg/m³	1		3/21/2014
Xylenes, Total	ND	4.6		µg/m³	1		3/21/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation
2242 W. Harrison, Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386
e-mail address: STATinfo@STATAnalysis.com AIHA, NYLAP and NELAP accredited

sis.com AINA, IVVLAL	CHAIN OF CUSTODY RECORD Nº: 844557	57 Page: of
	P.O. No.:	
Project Number: 20405.012, 005.2306, 20 Client Tracking No.:		
Project Name: 8KG	Quote No.:	
Project Location: Kankake, Ii		
Sampler(s):		
Report To: 424-3339		Furn Around:
		1//22 22
OC Level: 1 2 3 4 e-mail: 1914024 (2) 515- 14 may make		Results Needed;
Client Sample Number/Description: Date Taken Time E Date Town of		md/ms / /
M CCC		Remarks Lab No.:
120 N 720/10 N +	***)oQ
150/14 1150	1	7.90
112 3/6/17	***	603
21/12/	<i>**</i>	hon
الث	A	000
24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Relinquished by: (Signature) Comment of Manager Bate/Time: 2011(120) Received by: (Signature)	Comments: IE FP Time Survey-N 29.23 5.5 1106-1033	Laboratory Work Order No.:
ure) Date/Time:	Summe-W 28-75 7.5 1121-1040	1/220LC9
Received by: (Signature)	Jume-E 1058-1028	Received on Ice: Yes
Relinquished by: (Signature)	Preservation Code: $A = None$ $B = HNO$, $C = NaOH$	
Received by: (Signature)	35/EnCore	Temperature: 3-2°C

Sample Receipt Checklist

Client Name WESTON CHICAGO			Date and Tim	e Received:	3/21/2014 1:40:00 PM
Work Order Number 14030659	-		Received by:	DO	
Checklist completed by: Signature) 3/2 Date	1/14	Reviewed by:	AMP Initials	3/74//9 Date
Matrix:	Carrier name	Client Delivered			
Shipping container/cooler in good condition?		Yes 🗸	No 🗌	Not Present	
Custody seals intact on shippping container/o	cooler?	Yes	No 🗌	Not Present	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished a	nd received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels/c	ontainers?	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗸	No 🗌		
Sample containers intact?		Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗸	No 🗌		
All samples received within holding time?		Yes 🗸	No 🗌		
Container or Temp Blank temperature in com	pliance?	Yes 🗸	No 🗌	Temperature	3.2 °C
Water - VOA vials have zero headspace?	No VOA vials subm	nitted	Yes 🗸	No 🗌	
Water - Samples pH checked?		Yes	No 🖾	Checked by:	
Water - Samples properly preserved?		Yes	No 🗐	pH Adjusted?	
Any No response must be detailed in the com	ments section below.				
Comments:					
Client / Person contacted:	Date contacted:		Contac	cted by:	
Response:					

Analytical Run Summary

Run ID: VOA-6_140321A (R97360)

Analyst Printed:

۷P 24-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyze
2630514	CCV032114-6 5.0	CCV	TO 15A+	R97360	1	03211401.D	03/21/2014 11:46

Seqno	Sample ID	туре	Test Code	Batch	DΓ	File ID	Date/Time Analyzed
2620514	CCV032114-6 5.0	CCV	TO 154	D07260	4	03211401.D	03/21/2014 11:46
2630514			TO_15A+	R97360	1		
2630513	BFB032114-6	TUNE	BFB	R97360	1	03211401.D	03/21/2014 11:46
2631323	MB032114-6	MBLK	TO_15UG	R97360	1	03211402.D	03/21/2014 12:23
2630515	MB032114-6	MBLK	TO_15A+	R97360	1	03211402.D	03/21/2014 12:23
2630602	MB032114-6	MBLK	TO_15MG+	R97360	1	03211402.D	03/21/2014 12:23
2631324	LCS032114-6 5.0	LCS	TO_15UG	R97360	1	03211403.D	03/21/2014 13:25
2630521	LCS032114-6 5.0	LCS	TO_15A+	R97360	1	03211403.D	03/21/2014 13:25
2630603	LCS032114-6 5.0	LCS	TO_15MG+	R97360	1	03211403.D	03/21/2014 13:25
2631325	LCSD032114-6 5.0	LCSD	TO_15UG	R97360	1	03211404.D	03/21/2014 14:02
2630528	LCSD032114-6 5.0	LCSD	TO_15A+	R97360	1	03211404.D	03/21/2014 14:02
2630604	LCSD032114-6 5.0	LCSD	TO_15MG+	R97360	1	03211404.D	03/21/2014 14:02
2630605	14030659-003A	SAMP	TO_15MG+	75257	1	03211405.D	03/21/2014 16:08
2631326	14030659-003A	SAMP	TO_15UG	75257	1	03211405.D	03/21/2014 16:08
2631317	14030659-003A	SAMP	TO_15A	75257	1	03211405.D	03/21/2014 16:08
2630606	14030659-004A	SAMP	TO_15MG+	75257	1	03211406.D	03/21/2014 16:45
2631318	14030659-004A	SAMP	TO_15A	75257	1	03211406.D	03/21/2014 16:45
2631327	14030659-004A	SAMP	TO_15UG	75257	1	03211406.D	03/21/2014 16:45
2631328	14030659-005A	SAMP	TO_15UG	75257	1	03211407.D	03/21/2014 17:22
2631320	14030659-005A	SAMP	TO_15A	75257	1	03211407.D	03/21/2014 17:22
2630607	14030659-005A	SAMP	TO_15MG+	75257	1	03211407.D	03/21/2014 17:22

Work Order: 14030659

ANALYTICAL QC SUMMARY REPORT

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

BatchID: R97360

Sample ID MB032114-6	SampType: MBLK	TestCode: T	O_15A+ Units: ppbv		Prep Dat	te:		Run ID: VC	DA-6_14032	1A
Client ID: ZZZZZ	Batch ID: R97360	TestNo: T	O-15	Analysis Date: 3/21/2014			SeqNo: 2630515			
Analyte	Result	PQL SP	K value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	0.20								
1,1,2,2-Tetrachloroethane	ND	0.20								
1,1,2-Trichloroethane	ND	0.20								
1,1-Dichloroethane	ND	0.20								
1,1-Dichloroethene	ND	0.20								
1,2,4-Trichlorobenzene	ND	0.20								
1,2,4-Trimethylbenzene	ND	0.20								
1,2-Dibromoethane	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,2-Dichloroethane	ND	0.20								
1,2-Dichloropropane	ND	0.20								
1,3,5-Trimethylbenzene	ND	0.20								
1,3-Butadiene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
1,4-Dioxane	ND	1.0								
2-Butanone	ND	0.50								
2-Hexanone	ND	1.0								
4-Ethyltoluene	ND	0.20								
4-Methyl-2-pentanone	ND	1.0								
Acetone	ND	2.0								*
Benzene	ND	0.20								
Benzyl chloride	ND	0.50								
Bromodichloromethane	ND	0.20								
Bromoform	ND	0.50								
Bromomethane	0.05	0.50								J
Carbon disulfide	ND	0.20								
Carbon tetrachloride	ND	0.20								
Chlorobenzene	ND	0.20								
Chloroethane	ND	0.20								

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030659

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

20405.012.005.2306.00, BKG, Kankakee, IL

Sample ID MB032114-6	SampType: MBLK	TestCod	le: TO_15A+	Units: ppbv		Prep Da	te:		Run ID: VC	DA-6_140321	1A
Client ID: ZZZZZ	Batch ID: R97360	TestN	o: TO-15			Analysis Da	ite: 3/21/2	014	SeqNo: 26	30515	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	ND	0.20									
Chloromethane	ND	0.50									
cis-1,2-Dichloroethene	ND	0.20									
cis-1,3-Dichloropropene	ND	0.20									
Cyclohexane	ND	0.20									
Dibromochloromethane	ND	0.20									
Dichlorodifluoromethane	ND	0.20									
Ethyl acetate	ND	0.20									
Ethylbenzene	ND	0.20									
Freon-113	ND	0.20									
Freon-114	ND	1.0									
Heptane	ND	0.20									
Hexachlorobutadiene	ND	0.20									
Hexane	ND	0.50									
Isopropyl Alcohol	ND	1.0									
m,p-Xylene	ND	0.40									
Methyl tert-butyl ether	ND	0.20									
Methylene chloride	ND	2.0									
o-Xylene	ND	0.20									
Propene	ND	2.0									
Styrene	ND	0.20									
Tetrachloroethene	ND	0.20									
Tetrahydrofuran	ND	0.50									
Toluene	ND	0.20									
trans-1,2-Dichloroethene	ND	0.20									
trans-1,3-Dichloropropene	ND	0.20									
Trichloroethene	ND	0.20									
Trichlorofluoromethane	ND	0.20									
Vinyl acetate	ND	2.0									
Vinyl chloride	ND	0.20									
Xylenes, Total	ND	0.60									

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCS032114-6 5.0	SampType: LCS	TestCod	de: TO_15A+	Units: ppbv		Prep Dat	te:		Run ID: VO	A-6_140321	1 A
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2 0	014	SeqNo: 26	30521	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	4.09	0.20	5	0	81.8	70	130	0	0		
1,1,2,2-Tetrachloroethane	3.98	0.20	5	0	79.6	70	130	0	0		
1,1,2-Trichloroethane	4.25	0.20	5	0	85	70	130	0	0		
1,1-Dichloroethane	4.66	0.20	5	0	93.2	70	130	0	0		
1,1-Dichloroethene	4.69	0.20	5	0	93.8	70	130	0	0		
1,2,4-Trichlorobenzene	4.98	0.20	5	0	99.6	70	130	0	0		
1,2,4-Trimethylbenzene	4.48	0.20	5	0	89.6	70	130	0	0		
1,2-Dibromoethane	4.38	0.20	5	0	87.6	70	130	0	0		
1,2-Dichlorobenzene	4.24	0.20	5	0	84.8	70	130	0	0		
1,2-Dichloroethane	4.04	0.20	5	0	80.8	70	130	0	0		
1,2-Dichloropropane	4.11	0.20	5	0	82.2	70	130	0	0		
1,3,5-Trimethylbenzene	4.34	0.20	5	0	86.8	70	130	0	0		
1,3-Butadiene	4.6	0.20	5	0	92	70	130	0	0		
1,3-Dichlorobenzene	4.28	0.20	5	0	85.6	70	130	0	0		
1,4-Dichlorobenzene	4.15	0.20	5	0	83	70	130	0	0		
1,4-Dioxane	4.79	1.0	5	0	95.8	70	130	0	0		
2-Butanone	4.74	0.50	5	0	94.8	70	130	0	0		
2-Hexanone	4.84	1.0	5	0	96.8	70	130	0	0		
4-Ethyltoluene	4.42	0.20	5	0	88.4	70	130	0	0		
4-Methyl-2-pentanone	3.91	1.0	5	0	78.2	70	130	0	0		
Acetone	4.24	2.0	5	0	84.8	70	130	0	0		*
Benzene	3.74	0.20	5	0	74.8	70	130	0	0		
Benzyl chloride	3.9	0.50	5	0	78	70	130	0	0		
Bromodichloromethane	4.24	0.20	5	0	84.8	70	130	0	0		
Bromoform	4.39	0.50	5	0	87.8	70	130	0	0		
Bromomethane	4.59	0.50	5	0.05	90.8	70	130	0	0		
Carbon disulfide	4.85	0.20	5	0	97	70	130	0	0		
Carbon tetrachloride	4.07	0.20	5	0	81.4	70	130	0	0		
Chlorobenzene	3.72	0.20	5	0	74.4	70	130	0	0		
Chloroethane	4.79	0.20	5	0	95.8	70	130	0	0		
Chloroform	4	0.20	5	0	80	70	130	0	0		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Project:

Work Order: 14030659

Weston Solutions
14030659
20405.012.005.2306.00, BKG, Kankakee, IL
BatchID: R97360

Sample ID LCS032114-6 5.0	SampType: LCS	TestCo	de: TO_15A+	Units: ppbv		Prep Dat	te:		Run ID: VC	A-6_140321	IA
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2 0	014	SeqNo: 26	30521	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	4.58	0.50	5	0	91.6	70	130	0	0		
cis-1,2-Dichloroethene	4.74	0.20	5	0	94.8	70	130	0	0		
cis-1,3-Dichloropropene	4.42	0.20	5	0	88.4	70	130	0	0		
Cyclohexane	4.01	0.20	5	0	80.2	70	130	0	0		
Dibromochloromethane	4.68	0.20	5	0	93.6	70	130	0	0		
Dichlorodifluoromethane	4.66	0.20	5	0	93.2	70	130	0	0		
Ethyl acetate	3.67	0.20	5	0	73.4	70	130	0	0		
Ethylbenzene	3.94	0.20	5	0	78.8	70	130	0	0		
Freon-113	4.63	0.20	5	0	92.6	70	130	0	0		
Freon-114	4.84	1.0	5	0	96.8	70	130	0	0		
Heptane	4.05	0.20	5	0	81	70	130	0	0		
Hexachlorobutadiene	4.89	0.20	5	0	97.8	70	130	0	0		
Hexane	4.77	0.50	5	0	95.4	70	130	0	0		
Isopropyl Alcohol	4.42	1.0	5	0	88.4	70	130	0	0		
m,p-Xylene	8.03	0.40	10	0	80.3	70	130	0	0		
Methyl tert-butyl ether	4.79	0.20	5	0	95.8	70	130	0	0		
Methylene chloride	4.46	2.0	5	0	89.2	70	130	0	0		
o-Xylene	4.08	0.20	5	0	81.6	70	130	0	0		
Propene	4.05	2.0	5	0	81	70	130	0	0		
Styrene	4.35	0.20	5	0	87	70	130	0	0		
Tetrachloroethene	4.36	0.20	5	0	87.2	70	130	0	0		
Tetrahydrofuran	3.69	0.50	5	0	73.8	70	130	0	0		
Toluene	4.21	0.20	5	0	84.2	70	130	0	0		
trans-1,2-Dichloroethene	4.89	0.20	5	0	97.8	70	130	0	0		
trans-1,3-Dichloropropene	3.99	0.20	5	0	79.8	70	130	0	0		
Trichloroethene	4.22	0.20	5	0	84.4	70	130	0	0		
Trichlorofluoromethane	4.73	0.20	5	0	94.6	70	130	0	0		
Vinyl acetate	4.49	2.0	5	0	89.8	70	130	0	0		
Vinyl chloride	4.89	0.20	5	0	97.8	70	130	0	0		
Xylenes, Total	12.1	0.60	15	0	80.7	70	130	0	0		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCSD032114-6 5.0	SampType: LCSD	TestCod	de: TO_15A+	Units: ppbv		Prep Dat	te:		Run ID: VO	A-6_140321	Α
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2 0	014	SeqNo: 26	30528	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	4.11	0.20	5	0	82.2	70	130	4.09	0.488	25	
1,1,2,2-Tetrachloroethane	3.99	0.20	5	0	79.8	70	130	3.98	0.251	25	
1,1,2-Trichloroethane	4.28	0.20	5	0	85.6	70	130	4.25	0.703	25	
1,1-Dichloroethane	4.65	0.20	5	0	93	70	130	4.66	0.215	25	
1,1-Dichloroethene	4.73	0.20	5	0	94.6	70	130	4.69	0.849	25	
1,2,4-Trichlorobenzene	4.93	0.20	5	0	98.6	70	130	4.98	1.01	25	
1,2,4-Trimethylbenzene	4.41	0.20	5	0	88.2	70	130	4.48	1.57	25	
1,2-Dibromoethane	4.43	0.20	5	0	88.6	70	130	4.38	1.14	25	
1,2-Dichlorobenzene	4.21	0.20	5	0	84.2	70	130	4.24	0.710	25	
1,2-Dichloroethane	4.09	0.20	5	0	81.8	70	130	4.04	1.23	25	
1,2-Dichloropropane	4.17	0.20	5	0	83.4	70	130	4.11	1.45	25	
1,3,5-Trimethylbenzene	4.27	0.20	5	0	85.4	70	130	4.34	1.63	25	
1,3-Butadiene	4.62	0.20	5	0	92.4	70	130	4.6	0.434	25	
1,3-Dichlorobenzene	4.25	0.20	5	0	85	70	130	4.28	0.703	25	
1,4-Dichlorobenzene	4.13	0.20	5	0	82.6	70	130	4.15	0.483	25	
1,4-Dioxane	4.79	1.0	5	0	95.8	70	130	4.79	0	25	
2-Butanone	4.84	0.50	5	0	96.8	70	130	4.74	2.09	25	
2-Hexanone	4.84	1.0	5	0	96.8	70	130	4.84	0	25	
4-Ethyltoluene	4.34	0.20	5	0	86.8	70	130	4.42	1.83	25	
4-Methyl-2-pentanone	3.89	1.0	5	0	77.8	70	130	3.91	0.513	25	
Acetone	4.28	2.0	5	0	85.6	70	130	4.24	0.939	25	*
Benzene	3.77	0.20	5	0	75.4	70	130	3.74	0.799	25	
Benzyl chloride	4.19	0.50	5	0	83.8	70	130	3.9	7.17	25	
Bromodichloromethane	4.32	0.20	5	0	86.4	70	130	4.24	1.87	25	
Bromoform	4.54	0.50	5	0	90.8	70	130	4.39	3.36	25	
Bromomethane	4.64	0.50	5	0.05	91.8	70	130	4.59	1.08	25	
Carbon disulfide	4.85	0.20	5	0	97	70	130	4.85	0	25	
Carbon tetrachloride	4.2	0.20	5	0	84	70	130	4.07	3.14	25	
Chlorobenzene	3.72	0.20	5	0	74.4	70	130	3.72	0	25	
Chloroethane	4.79	0.20	5	0	95.8	70	130	4.79	0	25	
Chloroform	4.02	0.20	5	0	80.4	70	130	4	0.499	25	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCSD032114-6 5.0	SampType: LCSD	TestCo	de: TO_15A+	Units: ppbv		Prep Dat	e:		Run ID: VO	A-6_140321	IA
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2 0	014	SeqNo: 26	30528	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	4.33	0.50	5	0	86.6	70	130	4.58	5.61	25	
cis-1,2-Dichloroethene	4.8	0.20	5	0	96	70	130	4.74	1.26	25	
cis-1,3-Dichloropropene	4.53	0.20	5	0	90.6	70	130	4.42	2.46	25	
Cyclohexane	4.02	0.20	5	0	80.4	70	130	4.01	0.249	25	
Dibromochloromethane	4.77	0.20	5	0	95.4	70	130	4.68	1.90	25	
Dichlorodifluoromethane	4.66	0.20	5	0	93.2	70	130	4.66	0	25	
Ethyl acetate	3.69	0.20	5	0	73.8	70	130	3.67	0.543	25	
Ethylbenzene	3.94	0.20	5	0	78.8	70	130	3.94	0	25	
Freon-113	4.63	0.20	5	0	92.6	70	130	4.63	0	25	
Freon-114	4.93	1.0	5	0	98.6	70	130	4.84	1.84	25	
Heptane	4.05	0.20	5	0	81	70	130	4.05	0	25	
Hexachlorobutadiene	4.76	0.20	5	0	95.2	70	130	4.89	2.69	25	
Hexane	4.83	0.50	5	0	96.6	70	130	4.77	1.25	25	
Isopropyl Alcohol	4.72	1.0	5	0	94.4	70	130	4.42	6.56	25	
m,p-Xylene	7.98	0.40	10	0	79.8	70	130	8.03	0.625	25	
Methyl tert-butyl ether	4.86	0.20	5	0	97.2	70	130	4.79	1.45	25	
Methylene chloride	4.54	2.0	5	0	90.8	70	130	4.46	1.78	25	
o-Xylene	4.05	0.20	5	0	81	70	130	4.08	0.738	25	
Propene	4.13	2.0	5	0	82.6	70	130	4.05	1.96	25	
Styrene	4.41	0.20	5	0	88.2	70	130	4.35	1.37	25	
Tetrachloroethene	4.36	0.20	5	0	87.2	70	130	4.36	0	25	
Tetrahydrofuran	3.78	0.50	5	0	75.6	70	130	3.69	2.41	25	
Toluene	4.22	0.20	5	0	84.4	70	130	4.21	0.237	25	
trans-1,2-Dichloroethene	4.83	0.20	5	0	96.6	70	130	4.89	1.23	25	
trans-1,3-Dichloropropene	4.11	0.20	5	0	82.2	70	130	3.99	2.96	25	
Trichloroethene	4.25	0.20	5	0	85	70	130	4.22	0.708	25	
Trichlorofluoromethane	4.69	0.20	5	0	93.8	70	130	4.73	0.849	25	
Vinyl acetate	4.73	2.0	5	0	94.6	70	130	4.49	5.21	25	
Vinyl chloride	4.88	0.20	5	0	97.6	70	130	4.89	0.205	25	
Xylenes, Total	12.02	0.60	15	0	80.1	70	130	12.1	0.663	25	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order:

14030659

ANALYTICAL QC SUMMARY REPORT

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

BatchID: R97360

Sample ID MB032114-6	SampType: MBLK	TestCod	de: TO_15UG	Units: µg/m³		Prep Da	te:		Run ID: VC	A-6_140321	IA
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	ite: 3/21/2	014	SeqNo: 26	31323	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	1.1									
1,1,2,2-Tetrachloroethane	ND	1.4									
1,1,2-Trichloroethane	ND	1.1									
1,1-Dichloroethane	ND	0.80									
1,1-Dichloroethene	ND	0.80									
1,2,4-Trichlorobenzene	ND	1.5									
1,2,4-Trimethylbenzene	ND	1.0									
1,2-Dibromoethane	ND	1.5									
1,2-Dichlorobenzene	ND	1.2									
1,2-Dichloroethane	ND	0.80									
1,2-Dichloropropane	ND	0.90									
1,3,5-Trimethylbenzene	ND	1.0									
1,3-Butadiene	ND	0.40									
1,3-Dichlorobenzene	ND	1.2									
1,4-Dichlorobenzene	ND	1.2									
1,4-Dioxane	ND	1.8									
2-Butanone	ND	1.5									
2-Hexanone	ND	4.1									
4-Ethyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	4.1									
Acetone	ND	4.8									*
Benzene	ND	0.60									
Benzyl chloride	ND	2.6									
Bromodichloromethane	ND	1.3									
Bromoform	ND	5.2									
Bromomethane	0.1942	1.9									J
Carbon disulfide	ND	0.62									
Carbon tetrachloride	ND	1.3									
Chlorobenzene	ND	0.90									
Chloroethane	ND	0.50									
Chloroform	ND	1.0									

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order: 14030659

Project:

ANALYTICAL QC SUMMARY REPORT

20405.012.005.2306.00, BKG, Kankakee, IL **BatchID: R97360**

Sample ID MB032114-6	SampType: MBLK	TestCode: TO_15U	G Units: μg/m³	Prep Date:	Run ID: VOA-6_140321A
Client ID: ZZZZZ	Batch ID: R97360	TestNo: TO-15		Analysis Date: 3/21/2014	SeqNo: 2631323
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloromethane	ND	1.0			
cis-1,2-Dichloroethene	ND	0.80			
cis-1,3-Dichloropropene	ND	0.90			
Cyclohexane	ND	0.70			
Dibromochloromethane	ND	1.7			
Dichlorodifluoromethane	ND	1.0			
Ethyl acetate	ND	0.70			
Ethylbenzene	ND	0.90			
Freon-113	ND	1.5			
Freon-114	ND	7.0			
Heptane	ND	0.80			
Hexachlorobutadiene	ND	2.1			
Hexane	ND	1.8			
Isopropyl Alcohol	ND	2.5			
m,p-Xylene	ND	1.7			
Methyl tert-butyl ether	ND	0.70			
Methylene chloride	ND	6.9			
o-Xylene	ND	0.90			
Propene	ND	3.4			
Styrene	ND	0.90			
Tetrachloroethene	ND	1.4			
Tetrahydrofuran	ND	1.5			
Toluene	ND	0.80			
trans-1,2-Dichloroethene	ND	0.80			
trans-1,3-Dichloropropene	ND	0.90			
Trichloroethene	ND	1.1			
Trichlorofluoromethane	ND	1.1			
Vinyl acetate	ND	7.0			
Vinyl chloride	ND	0.50			
Xylenes, Total	ND	2.6			

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCS032114-6 5.0	SampType: LCS	TestCo	de: TO_15UG	Units: µg/m³		Prep Dat	te:		Run ID: VO	A-6_140321	1 A
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	ite: 3/21/20	014	SeqNo: 26	31324	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	22.32	1.1	27.28	0	81.8	70	130	0	0		
1,1,2,2-Tetrachloroethane	27.33	1.4	34.34	0	79.6	70	130	0	0		
1,1,2-Trichloroethane	23.19	1.1	27.28	0	85	70	130	0	0		
1,1-Dichloroethane	18.86	0.80	20.24	0	93.2	70	130	0	0		
1,1-Dichloroethene	18.6	0.80	19.82	0	93.8	70	130	0	0		
1,2,4-Trichlorobenzene	36.96	1.5	37.11	0	99.6	70	130	0	0		
1,2,4-Trimethylbenzene	22.02	1.0	24.58	0	89.6	70	130	0	0		
1,2-Dibromoethane	33.65	1.5	38.42	0	87.6	70	130	0	0		
1,2-Dichlorobenzene	25.49	1.2	30.06	0	84.8	70	130	0	0		
1,2-Dichloroethane	16.35	0.80	20.24	0	80.8	70	130	0	0		
1,2-Dichloropropane	18.99	0.90	23.11	0	82.2	70	130	0	0		
1,3,5-Trimethylbenzene	21.33	1.0	24.58	0	86.8	70	130	0	0		
1,3-Butadiene	10.18	0.40	11.06	0	92	70	130	0	0		
1,3-Dichlorobenzene	25.73	1.2	30.06	0	85.6	70	130	0	0		
1,4-Dichlorobenzene	24.95	1.2	30.06	0	83	70	130	0	0		
1,4-Dioxane	17.26	1.8	18.02	0	95.8	70	130	0	0		
2-Butanone	13.98	1.5	14.75	0	94.8	70	130	0	0		
2-Hexanone	19.83	4.1	20.48	0	96.8	70	130	0	0		
4-Ethyltoluene	21.73	1.0	24.58	0	88.4	70	130	0	0		
4-Methyl-2-pentanone	16.02	4.1	20.48	0	78.2	70	130	0	0		
Acetone	10.07	4.8	11.88	0	84.8	70	130	0	0		*
Benzene	11.95	0.60	15.97	0	74.8	70	130	0	0		
Benzyl chloride	20.19	2.6	25.89	0	78	70	130	0	0		
Bromodichloromethane	28.41	1.3	33.5	0	84.8	70	130	0	0		
Bromoform	45.38	5.2	51.68	0	87.8	70	130	0	0		
Bromomethane	17.82	1.9	19.42	0.1942	90.8	70	130	0	0		
Carbon disulfide	15.1	0.62	15.57	0	97	70	130	0	0		
Carbon tetrachloride	25.61	1.3	31.46	0	81.4	70	130	0	0		
Chlorobenzene	17.13	0.90	23.02	0	74.4	70	130	0	0		
Chloroethane	12.64	0.50	13.19	0	95.8	70	130	0	0		
Chloroform	19.53	1.0	24.41	0	80	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCS032114-6 5.0	SampType: LCS	TestCod	de: TO_15UG	Units: µg/m³		Prep Dat	te:		Run ID: VO	A-6_140321	IA
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2 0	014	SeqNo: 26	31324	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	I owl imit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
,										IN DEITH	Quai
Chloromethane	9.458	1.0	10.33	0	91.6	70	130	0	0		
cis-1,2-Dichloroethene	18.79	0.80	19.82	0	94.8	70	130	0	0		
cis-1,3-Dichloropropene	20.06	0.90	22.69	0	88.4	70	130	0	0		
Cyclohexane	13.8	0.70	17.21	0	80.2	70	130	0	0		
Dibromochloromethane	39.87	1.7	42.59	0	93.6	70	130	0	0		
Dichlorodifluoromethane	23.04	1.0	24.73	0	93.2	70	130	0	0		
Ethyl acetate	13.23	0.70	18.02	0	73.4	70	130	0	0		
Ethylbenzene	17.11	0.90	21.71	0	78.8	70	130	0	0		
Freon-113	35.48	1.5	38.32	0	92.6	70	130	0	0		
Freon-114	33.83	7.0	34.95	0	96.8	70	130	0	0		
Heptane	16.6	0.80	20.49	0	81	70	130	0	0		
Hexachlorobutadiene	52.15	2.1	53.33	0	97.8	70	130	0	0		
Hexane	16.81	1.8	17.62	0	95.4	70	130	0	0		
Isopropyl Alcohol	10.86	2.5	12.29	0	88.4	70	130	0	0		
m,p-Xylene	34.87	1.7	43.42	0	80.3	70	130	0	0		
Methyl tert-butyl ether	17.27	0.70	18.03	0	95.8	70	130	0	0		
Methylene chloride	15.49	6.9	17.37	0	89.2	70	130	0	0		
o-Xylene	17.72	0.90	21.71	0	81.6	70	130	0	0		
Propene	6.97	3.4	8.605	0	81	70	130	0	0		
Styrene	18.53	0.90	21.3	0	87	70	130	0	0		
Tetrachloroethene	29.57	1.4	33.91	0	87.2	70	130	0	0		
Tetrahydrofuran	10.88	1.5	14.75	0	73.8	70	130	0	0		
Toluene	15.86	0.80	18.84	0	84.2	70	130	0	0		
trans-1,2-Dichloroethene	19.39	0.80	19.82	0	97.8	70	130	0	0		
trans-1,3-Dichloropropene	18.11	0.90	22.69	0	79.8	70	130	0	0		
Trichloroethene	22.68	1.1	26.87	0	84.4	70	130	0	0		
Trichlorofluoromethane	26.58	1.1	28.09	0	94.6	70	130	0	0		
Vinyl acetate	15.81	7.0	17.61	0	89.8	70	130	0	0		
Vinyl chloride	12.5	0.50	12.78	0	97.8	70	130	0	0		
Xylenes, Total	52.54	2.6	65.13	0	80.7	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCSD032114-6 5.0	SampType: LCSD	TestCo	de: TO_15UG	Units: µg/m³		Prep Dat	te:		Run ID: VC	A-6_140321	Α
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2	014	SeqNo: 26	31325	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	22.42	1.1	27.28	0	82.2	70	130	22.32	0.488	25	
1,1,2,2-Tetrachloroethane	27.4	1.4	34.34	0	79.8	70	130	27.33	0.251	25	
1,1,2-Trichloroethane	23.35	1.1	27.28	0	85.6	70	130	23.19	0.703	25	
1,1-Dichloroethane	18.82	0.80	20.24	0	93	70	130	18.86	0.215	25	
1,1-Dichloroethene	18.75	0.80	19.82	0	94.6	70	130	18.6	0.849	25	
1,2,4-Trichlorobenzene	36.59	1.5	37.11	0	98.6	70	130	36.96	1.01	25	
1,2,4-Trimethylbenzene	21.68	1.0	24.58	0	88.2	70	130	22.02	1.57	25	
1,2-Dibromoethane	34.04	1.5	38.42	0	88.6	70	130	33.65	1.14	25	
1,2-Dichlorobenzene	25.31	1.2	30.06	0	84.2	70	130	25.49	0.710	25	
1,2-Dichloroethane	16.55	0.80	20.24	0	81.8	70	130	16.35	1.23	25	
1,2-Dichloropropane	19.27	0.90	23.11	0	83.4	70	130	18.99	1.45	25	
1,3,5-Trimethylbenzene	20.99	1.0	24.58	0	85.4	70	130	21.33	1.63	25	
1,3-Butadiene	10.22	0.40	11.06	0	92.4	70	130	10.18	0.434	25	
1,3-Dichlorobenzene	25.55	1.2	30.06	0	85	70	130	25.73	0.703	25	
1,4-Dichlorobenzene	24.83	1.2	30.06	0	82.6	70	130	24.95	0.483	25	
1,4-Dioxane	17.26	1.8	18.02	0	95.8	70	130	17.26	0	25	
2-Butanone	14.27	1.5	14.75	0	96.8	70	130	13.98	2.09	25	
2-Hexanone	19.83	4.1	20.48	0	96.8	70	130	19.83	0	25	
4-Ethyltoluene	21.33	1.0	24.58	0	86.8	70	130	21.73	1.83	25	
4-Methyl-2-pentanone	15.94	4.1	20.48	0	77.8	70	130	16.02	0.513	25	
Acetone	10.17	4.8	11.88	0	85.6	70	130	10.07	0.939	25	*
Benzene	12.04	0.60	15.97	0	75.4	70	130	11.95	0.799	25	
Benzyl chloride	21.69	2.6	25.89	0	83.8	70	130	20.19	7.17	25	
Bromodichloromethane	28.95	1.3	33.5	0	86.4	70	130	28.41	1.87	25	
Bromoform	46.93	5.2	51.68	0	90.8	70	130	45.38	3.36	25	
Bromomethane	18.02	1.9	19.42	0.1942	91.8	70	130	17.82	1.08	25	
Carbon disulfide	15.1	0.62	15.57	0	97	70	130	15.1	0	25	
Carbon tetrachloride	26.42	1.3	31.46	0	84	70	130	25.61	3.14	25	
Chlorobenzene	17.13	0.90	23.02	0	74.4	70	130	17.13	0	25	
Chloroethane	12.64	0.50	13.19	0	95.8	70	130	12.64	0	25	
Chloroform	19.63	1.0	24.41	0	80.4	70	130	19.53	0.499	25	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Project:

Work Order: 14030659

14030659 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97360

Sample ID LCSD032114-6 5.0	SampType: LCSD	TestCo	de: TO_15UG	Units: µg/m³		Prep Dat	te:		Run ID: VO	A-6_140321	Α
Client ID: ZZZZZ	Batch ID: R97360	TestN	lo: TO-15			Analysis Da	te: 3/21/2	014	SeqNo: 26	31325	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	8.942	1.0	10.33	0	86.6	70	130	9.458	5.61	25	
cis-1,2-Dichloroethene	19.03	0.80	19.82	0	96	70	130	18.79	1.26	25	
cis-1,3-Dichloropropene	20.56	0.90	22.69	0	90.6	70	130	20.06	2.46	25	
Cyclohexane	13.84	0.70	17.21	0	80.4	70	130	13.8	0.249	25	
Dibromochloromethane	40.63	1.7	42.59	0	95.4	70	130	39.87	1.90	25	
Dichlorodifluoromethane	23.04	1.0	24.73	0	93.2	70	130	23.04	0	25	
Ethyl acetate	13.3	0.70	18.02	0	73.8	70	130	13.23	0.543	25	
Ethylbenzene	17.11	0.90	21.71	0	78.8	70	130	17.11	0	25	
Freon-113	35.48	1.5	38.32	0	92.6	70	130	35.48	0	25	
Freon-114	34.46	7.0	34.95	0	98.6	70	130	33.83	1.84	25	
Heptane	16.6	0.80	20.49	0	81	70	130	16.6	0	25	
Hexachlorobutadiene	50.77	2.1	53.33	0	95.2	70	130	52.15	2.69	25	
Hexane	17.02	1.8	17.62	0	96.6	70	130	16.81	1.25	25	
Isopropyl Alcohol	11.6	2.5	12.29	0	94.4	70	130	10.86	6.56	25	
m,p-Xylene	34.65	1.7	43.42	0	79.8	70	130	34.87	0.625	25	
Methyl tert-butyl ether	17.52	0.70	18.03	0	97.2	70	130	17.27	1.45	25	
Methylene chloride	15.77	6.9	17.37	0	90.8	70	130	15.49	1.78	25	
o-Xylene	17.58	0.90	21.71	0	81	70	130	17.72	0.738	25	
Propene	7.108	3.4	8.605	0	82.6	70	130	6.97	1.96	25	
Styrene	18.79	0.90	21.3	0	88.2	70	130	18.53	1.37	25	
Tetrachloroethene	29.57	1.4	33.91	0	87.2	70	130	29.57	0	25	
Tetrahydrofuran	11.15	1.5	14.75	0	75.6	70	130	10.88	2.41	25	
Toluene	15.9	0.80	18.84	0	84.4	70	130	15.86	0.237	25	
trans-1,2-Dichloroethene	19.15	0.80	19.82	0	96.6	70	130	19.39	1.23	25	
trans-1,3-Dichloropropene	18.65	0.90	22.69	0	82.2	70	130	18.11	2.96	25	
Trichloroethene	22.84	1.1	26.87	0	85	70	130	22.68	0.708	25	
Trichlorofluoromethane	26.35	1.1	28.09	0	93.8	70	130	26.58	0.849	25	
Vinyl acetate	16.65	7.0	17.61	0	94.6	70	130	15.81	5.21	25	
Vinyl chloride	12.47	0.50	12.78	0	97.6	70	130	12.5	0.205	25	
Xylenes, Total	52.19	2.6	65.13	0	80.1	70	130	52.54	0.663	25	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

CLIENT: Weston Solutions

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

Test No: SW8260B Matrix: W

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	BR4FBZ	BZMED8	DBFM	DCA12D4	
VBLK032214-7	94.6	97.8	104	101	
VLCS032214-7	96.8	103	108	98.8	
VLCSD032214-7	100	102	106	100	
14030659-001A	94.9	101	111	101	
14030659-002A	96.3	101	108	97.8	

-Acronym		Surrogate	QC Limits
BR4FBZ	=	4-Bromofluorobenzene	86-115
BZMED8	=	Toluene-d8	88-110
DBFM	=	Dibromofluoromethane	86-118
DCA12D4	=	1,2-Dichloroethane-d4	80-120

 $^{{\}bf *Surrogate\ recovery\ outside\ acceptance\ limits}$

Analytical Run Summary

Run ID: VOA-7_140322A (R97379)

Analyst Printed: ERP 24-Mar-14

SeqNo	Sample ID	Туре	Test Code	Batch	DF	File ID	Date/Time Analyzed
				_		_	
2630990	BFB032214-7	TUNE	BFB_624	R97379	1	03221401.D	03/22/2014 12:55
2630991	VSTD050	CCV	VOC_W+	R97379	1	03221404.D	03/22/2014 15:18
2630994	VBLK032214-7	MBLK	VOC_W+	R97379	1	03221405.D	03/22/2014 15:52
2630996	VLCS032214-7	LCS	VOC_W+	R97379	1	03221406.D	03/22/2014 16:27
2630998	VLCSD032214-7	LCSD	VOC_W+	R97379	1	03221407.D	03/22/2014 17:01
2631022	14030536-011B	SAMP	VOC_W	R97379	10	03221408.D	03/22/2014 18:20
2631002	14030536-013B	SAMP	VOC_W	R97379	10	03221409.D	03/22/2014 18:54
2631003	14030536-015B	SAMP	VOC_W	R97379	10	03221410.D	03/22/2014 19:29
2631005	14030536-016B	SAMP	VOC_W	R97379	10	03221411.D	03/22/2014 20:03
2631007	14030536-017B	SAMP	VOC_W	R97379	10	03221412.D	03/22/2014 20:38
2631010	14030536-018B	SAMP	VOC_W	R97379	10	03221413.D	03/22/2014 21:12
2631013	14030536-019B	SAMP	VOC_W	R97379	10	03221414.D	03/22/2014 21:46
2631016	14030536-020B	SAMP	VOC_W	R97379	10	03221415.D	03/22/2014 22:21
2631018	14030659-001A	SAMP	VOC_W	R97379	1	03221416.D	03/22/2014 22:55
2631019	14030659-002A	SAMP	VOC_W	R97379	1	03221417.D	03/22/2014 23:30
2631020	14030536-023B	SAMP	VOC_W	R97379	1	03221418.D	03/23/2014 0:04
2631021	14030536-024B	SAMP	VOC_W	R97379	1	03221419.D	03/23/2014 0:38

ANALYTICAL QC SUMMARY REPORT

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL BatchID: R97379

Sample ID VBLK032214-7	SampType: MBLK	TestCo	de: VOC_W+	Units: mg/L		Prep Da	te:		Run ID: VC	A-7_140322	2A
Client ID: ZZZZZ	Batch ID: R97379	TestN	lo: SW8260 B	1		Analysis Da	ite: 3/22/2	014	SeqNo: 26	30994	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	ND	0.0050									
1,1,2,2-Tetrachloroethane	ND	0.0050									
1,1,2-Trichloroethane	ND	0.0050									
1,1-Dichloroethane	ND	0.0050									
1,1-Dichloroethene	ND	0.0050									
1,2,4-Trichlorobenzene	0.00186	0.0050									J
1,2,4-Trimethylbenzene	0.00094	0.0050									J
1,2-Dibromoethane	ND	0.0050									
1,2-Dichlorobenzene	ND	0.0050									
1,2-Dichloroethane	ND	0.0050									
1,2-Dichloropropane	ND	0.0050									
1,3,5-Trimethylbenzene	0.00058	0.0050									J
1,3-Butadiene	ND	0.010									*
1,3-Dichlorobenzene	ND	0.0050									
1,4-Dichlorobenzene	0.00048	0.0050									J
1,4-Dioxane	ND	0.20									
2-Butanone	ND	0.020									
2-Hexanone	ND	0.020									
4-Methyl-2-pentanone	ND	0.020									
Acetone	ND	0.020									
Benzene	0.00023	0.0050									J
Bromochloromethane	ND	0.0050									
Bromodichloromethane	ND	0.0050									
Bromoform	ND	0.0050									
Bromomethane	ND	0.010									
Carbon disulfide	0.00039	0.010									J
Carbon tetrachloride	ND	0.0050									
Chlorobenzene	ND	0.0050									
Chloroethane	ND	0.010									
Chloroform	ND	0.0050									
Chloromethane	ND	0.010									

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order: 14030659

ANALYTICAL QC SUMMARY REPORT

BatchID: R97379

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Batch**

Sample ID VBLK032214-7	SampType: MBLK	TestCode: \	VOC_W+	Units: mg/L		Prep Dat	e:		Run ID: VC	A-7_140322	2A
Client ID: ZZZZZ	Batch ID: R97379	TestNo: \$	SW8260B			Analysis Da	te: 3/22/2 0	014	SeqNo: 26	30994	
Analyte	Result	PQL SF	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-Dichloroethene	ND	0.0050									
cis-1,3-Dichloropropene	ND	0.0010									
Dibromochloromethane	ND	0.0050									
Dichlorodifluoromethane	ND	0.010									
Ethyl acetate	ND	0.050									
Ethylbenzene	ND	0.0050									
Hexachlorobutadiene	0.00498	0.0050									J*
Hexane	ND	0.0050									*
Isopropyl Alcohol	ND	0.40									*
m,p-Xylene	ND	0.010									
Methyl tert-butyl ether	ND	0.0050									
Methylene chloride	ND	0.0050									
o-Xylene	ND	0.0050									
Styrene	ND	0.0050									
Tetrachloroethene	ND	0.0050									
Toluene	ND	0.0050									
trans-1,2-Dichloroethene	ND	0.0050									
trans-1,3-Dichloropropene	ND	0.0010									
Trichloroethene	0.00406	0.0050									J
Trichlorofluoromethane	ND	0.0050									
Vinyl acetate	ND	0.020									
Vinyl chloride	ND	0.0020									
Xylenes, Total	ND	0.015									
Sample ID VLCS032214-7	SampType: LCS	TestCode: \	VOC_W+	Units: mg/L		Prep Dat	e:		Run ID: VC	A-7_140322	2A
Client ID: ZZZZZ	Batch ID: R97379	TestNo: \$	SW8260B			Analysis Da	te: 3/22/2 0	014	SeqNo: 26	30996	
Analyte	Result	PQL SF	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.01948	0.0050	0.02	0	97.4	70	130	0	0		
1,1,2,2-Tetrachloroethane	0.02062	0.0050	0.02	0	103	70	130	0	0		
1,1,2-Trichloroethane	0.01998	0.0050	0.02	0	99.9	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

Work Order:

Project:

14030659

20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97379

Sample ID VLCS032214-7	SampType: LCS	TestCo	de: VOC_W+	Units: mg/L		Prep Dat	te:		Run ID: VO	A-7_140322	2A
Client ID: ZZZZZ	Batch ID: R97379	TestN	No: SW8260B			Analysis Da	te: 3/22/2	014	SeqNo: 26	30996	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	0.02181	0.0050	0.02	0	109	70	130	0	0		
1,1-Dichloroethene	0.01678	0.0050	0.02	0	83.9	70	130	0	0		
1,2,4-Trichlorobenzene	0.01845	0.0050	0.02	0.00186	83	70	130	0	0		
1,2,4-Trimethylbenzene	0.01942	0.0050	0.02	0.00094	92.4	70	130	0	0		
1,2-Dibromoethane	0.01965	0.0050	0.02	0	98.3	70	130	0	0		
1,2-Dichlorobenzene	0.01845	0.0050	0.02	0	92.2	70	130	0	0		
1,2-Dichloroethane	0.0195	0.0050	0.02	0	97.5	70	130	0	0		
1,2-Dichloropropane	0.01994	0.0050	0.02	0	99.7	70	130	0	0		
1,3,5-Trimethylbenzene	0.01897	0.0050	0.02	0.00058	92	70	130	0	0		
1,3-Butadiene	0.02549	0.010	0.02	0	127	70	130	0	0		*
1,3-Dichlorobenzene	0.01811	0.0050	0.02	0	90.6	70	130	0	0		
1,4-Dichlorobenzene	0.01902	0.0050	0.02	0.00048	92.7	70	130	0	0		
1,4-Dioxane	0.2109	0.20	0.2	0	105	50	150	0	0		
2-Butanone	0.04006	0.020	0.04	0	100	70	130	0	0		
2-Hexanone	0.03651	0.020	0.04	0	91.3	70	130	0	0		
4-Methyl-2-pentanone	0.04174	0.020	0.04	0	104	70	130	0	0		
Acetone	0.04623	0.020	0.04	0	116	50	150	0	0		
Benzene	0.01988	0.0050	0.02	0.00023	98.3	70	130	0	0		
Bromochloromethane	0.02397	0.0050	0.02	0	120	70	130	0	0		
Bromodichloromethane	0.02055	0.0050	0.02	0	103	70	130	0	0		
Bromoform	0.0197	0.0050	0.02	0	98.5	70	130	0	0		
Bromomethane	0.02389	0.010	0.02	0	119	70	130	0	0		
Carbon disulfide	0.05066	0.010	0.04	0.00039	126	70	130	0	0		
Carbon tetrachloride	0.01839	0.0050	0.02	0	92	70	130	0	0		
Chlorobenzene	0.01878	0.0050	0.02	0	93.9	70	130	0	0		
Chloroethane	0.02461	0.010	0.02	0	123	70	130	0	0		
Chloroform	0.02155	0.0050	0.02	0	108	70	130	0	0		
Chloromethane	0.02373	0.010	0.02	0	119	70	130	0	0		
cis-1,2-Dichloroethene	0.02028	0.0050	0.02	0	101	70	130	0	0		
cis-1,3-Dichloropropene	0.02022	0.0010	0.02	0	101	70	130	0	0		
Dibromochloromethane	0.02034	0.0050	0.02	0	102	70	130	0	0		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030659

Sample ID VLCS032214-7

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

SampType: LCS

TestCode: VOC_W+

ANALYTICAL QC SUMMARY REPORT

BatchID: R97379

Run ID: VOA-7_140322A

Campio ib 1200022111	Campiypo. 200		uo. 100_111	onno. mg/ =		1 Top Date	•		rtarrib. ••	// / _ · · · · · · · · · · · ·	., .	
Client ID: ZZZZZ	Batch ID: R97379	TestN	No: SW8260E	3		Analysis Date	e: 3/22/2 0	014	SeqNo: 2630996			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Dichlorodifluoromethane	0.03232	0.010	0.02	0	162	70	130	0	0		S	
Ethyl acetate	0.01947	0.050	0.02	0	97.4	70	130	0	0		J	
Ethylbenzene	0.01906	0.0050	0.02	0	95.3	70	130	0	0			
Hexachlorobutadiene	0.02017	0.0050	0.02	0.00498	76	70	130	0	0		*	
Hexane	0.02155	0.0050	0.02	0	108	70	130	0	0		*	
Isopropyl Alcohol	0.391	0.40	0.4	0	97.8	50	150	0	0		J*	
m,p-Xylene	0.03816	0.010	0.04	0	95.4	70	130	0	0			
Methyl tert-butyl ether	0.0221	0.0050	0.02	0	110	50	150	0	0			
Methylene chloride	0.0214	0.0050	0.02	0	107	70	130	0	0			
o-Xylene	0.01827	0.0050	0.02	0	91.4	70	130	0	0			
Styrene	0.0199	0.0050	0.02	0	99.5	70	130	0	0			
Tetrachloroethene	0.01857	0.0050	0.02	0	92.8	70	130	0	0			
Toluene	0.02033	0.0050	0.02	0	102	70	130	0	0			
rans-1,2-Dichloroethene	0.02063	0.0050	0.02	0	103	70	130	0	0			
rans-1,3-Dichloropropene	0.01926	0.0010	0.02	0	96.3	70	130	0	0			
Trichloroethene	0.01889	0.0050	0.02	0.00406	74.2	70	130	0	0			
Trichlorofluoromethane	0.02397	0.0050	0.02	0	120	70	130	0	0			
Vinyl acetate	0.05291	0.020	0.04	0	132	50	150	0	0			
Vinyl chloride	0.02479	0.0020	0.02	0	124	70	130	0	0			
Xylenes, Total	0.05642	0.015	0.06	0	94	70	130	0	0			
Sample ID VLCSD032214-7	SampType: LCSD	TestCo	de: VOC_W+	Units: mg/L		Prep Date	:		Run ID: VC	A-7_140322	:A	
Client ID: ZZZZZ	Batch ID: R97379	TestN	No: SW8260E	,		Analysis Date	e: 3/22/2 0	014	SeqNo: 26	30998		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1-Trichloroethane	0.01955	0.0050	0.02	0	97.8	70	130	0.01948	0.359	20		
1,1,2,2-Tetrachloroethane	0.02091	0.0050	0.02	0	105	70	130	0.02062	1.40	20		
1,1,2-Trichloroethane	0.02061	0.0050	0.02	0	103	70	130	0.01998	3.10	20		
1,1-Dichloroethane	0.0217	0.0050	0.02	0	108	70	130	0.02181	0.506	20		
1,1-Dichloroethene	0.01784	0.0050	0.02	0	89.2	70	130	0.01678	6.12	20		
•												

Units: mg/L

Prep Date:

Qualifiers:

1,2,4-Trichlorobenzene

0.02083

0.0050

0.02

94.8

70

130

0.00186

12.1

20

0.01845

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Work Order: 14030659

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

ANALYTICAL QC SUMMARY REPORT

BatchID: R97379

Sample ID VLCSD032214-7	SampType: LCSD	TestCo	de: VOC_W+	Units: mg/L		Prep Da	te:		Run ID: VO	A-7_140322	Α
Client ID: ZZZZZ	Batch ID: R97379	TestN	lo: SW8260B			Analysis Da	ite: 3/22/20	014	SeqNo: 26	30998	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	0.02038	0.0050	0.02	0.00094	97.2	70	130	0.01942	4.82	20	
1,2-Dibromoethane	0.02045	0.0050	0.02	0	102	70	130	0.01965	3.99	20	
1,2-Dichlorobenzene	0.01941	0.0050	0.02	0	97	70	130	0.01845	5.07	20	
1,2-Dichloroethane	0.02047	0.0050	0.02	0	102	70	130	0.0195	4.85	20	
1,2-Dichloropropane	0.02097	0.0050	0.02	0	105	70	130	0.01994	5.04	20	
1,3,5-Trimethylbenzene	0.01978	0.0050	0.02	0.00058	96	70	130	0.01897	4.18	20	
1,3-Butadiene	0.02655	0.010	0.02	0	133	70	130	0.02549	4.07	20	S*
1,3-Dichlorobenzene	0.01914	0.0050	0.02	0	95.7	70	130	0.01811	5.53	20	
1,4-Dichlorobenzene	0.01987	0.0050	0.02	0.00048	97	70	130	0.01902	4.37	20	
1,4-Dioxane	0.1947	0.20	0.2	0	97.3	50	150	0.2109	0	20	J
2-Butanone	0.03944	0.020	0.04	0	98.6	70	130	0.04006	1.56	20	
2-Hexanone	0.03609	0.020	0.04	0	90.2	70	130	0.03651	1.16	20	
4-Methyl-2-pentanone	0.03931	0.020	0.04	0	98.3	70	130	0.04174	6.00	20	
Acetone	0.04387	0.020	0.04	0	110	50	150	0.04623	5.24	20	
Benzene	0.02092	0.0050	0.02	0.00023	103	70	130	0.01988	5.10	20	
Bromochloromethane	0.02415	0.0050	0.02	0	121	70	130	0.02397	0.748	20	
Bromodichloromethane	0.02085	0.0050	0.02	0	104	70	130	0.02055	1.45	20	
Bromoform	0.01951	0.0050	0.02	0	97.6	70	130	0.0197	0.969	20	
Bromomethane	0.02456	0.010	0.02	0	123	70	130	0.02389	2.77	20	
Carbon disulfide	0.05255	0.010	0.04	0.00039	130	70	130	0.05066	3.66	20	S
Carbon tetrachloride	0.01998	0.0050	0.02	0	99.9	70	130	0.01839	8.29	20	
Chlorobenzene	0.0201	0.0050	0.02	0	100	70	130	0.01878	6.79	20	
Chloroethane	0.02654	0.010	0.02	0	133	70	130	0.02461	7.55	20	S
Chloroform	0.02255	0.0050	0.02	0	113	70	130	0.02155	4.54	20	
Chloromethane	0.02498	0.010	0.02	0	125	70	130	0.02373	5.13	20	
cis-1,2-Dichloroethene	0.02175	0.0050	0.02	0	109	70	130	0.02028	7.00	20	
cis-1,3-Dichloropropene	0.02002	0.0010	0.02	0	100	70	130	0.02022	0.994	20	
Dibromochloromethane	0.02032	0.0050	0.02	0	102	70	130	0.02034	0.0984	20	
Dichlorodifluoromethane	0.03255	0.010	0.02	0	163	70	130	0.03232	0.709	20	S
Ethyl acetate	0.02169	0.050	0.02	0	108	70	130	0.01947	0	20	J
Ethylbenzene	0.02031	0.0050	0.02	0	102	70	130	0.01906	6.35	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

K - Ki D outside accepted recovery mints

B - Analyte detected in the associated Method Blank E - Value above quantitation range

H/HT - Holding Time Exceeded

Work Order: 14030659 ANALYTICAL QC SUMMARY REPORT

Project: 20405.012.005.2306.00, BKG, Kankakee, IL BatchID: R97379

Sample ID VLCSD032214-7	SampType: LCSD	TestCo	de: VOC_W+	Units: mg/L	Prep Date:				Run ID: VC	A-7_140322	Α		
Client ID: ZZZZZ	Batch ID: R97379	TestN	lo: SW8260B			Analysis Date: 3/22/2014				SeqNo: 2630998			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Hexachlorobutadiene	0.02082	0.0050	0.02	0.00498	79.2	70	130	0.02017	3.17	20	*		
Hexane	0.02251	0.0050	0.02	0	113	70	130	0.02155	4.36	20	*		
Isopropyl Alcohol	0.3655	0.40	0.4	0	91.4	50	150	0.391	0	20	J*		
m,p-Xylene	0.04072	0.010	0.04	0	102	70	130	0.03816	6.49	20			
Methyl tert-butyl ether	0.02214	0.0050	0.02	0	111	50	150	0.0221	0.181	20			
Methylene chloride	0.02208	0.0050	0.02	0	110	70	130	0.0214	3.13	20			
o-Xylene	0.01975	0.0050	0.02	0	98.8	70	130	0.01827	7.79	20			
Styrene	0.02085	0.0050	0.02	0	104	70	130	0.0199	4.66	20			
Tetrachloroethene	0.02051	0.0050	0.02	0	103	70	130	0.01857	9.93	20			
Toluene	0.02098	0.0050	0.02	0	105	70	130	0.02033	3.15	20			
trans-1,2-Dichloroethene	0.02113	0.0050	0.02	0	106	70	130	0.02063	2.39	20			
trans-1,3-Dichloropropene	0.01932	0.0010	0.02	0	96.6	70	130	0.01926	0.311	20			
Trichloroethene	0.0199	0.0050	0.02	0.00406	79.2	70	130	0.01889	5.21	20			
Trichlorofluoromethane	0.0261	0.0050	0.02	0	130	70	130	0.02397	8.51	20	S		
Vinyl acetate	0.04779	0.020	0.04	0	119	50	150	0.05291	10.2	20			
Vinyl chloride	0.02683	0.0020	0.02	0	134	70	130	0.02479	7.90	20	S		
Xylenes, Total	0.06046	0.015	0.06	0	101	70	130	0.05642	6.91	20			

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

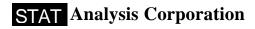
B - Analyte detected in the associated Method Blank

H/HT - Holding Time Exceeded

CLIENT: Weston Solutions

Work Order: 14030659

 Project:
 20405.012.005.2306.00, BKG, Kankakee, IL


 Test No:
 SW8270C-SIM
 Matrix: W

QC SUMMARY REPORT SURROGATE RECOVERIES

Sample ID	DCBZ12D4	NO2BZD5	PHEN2F	PHEND14	
14030659-001B	100	85.4	102	102	
14030659-002B	81.8	70.6	101	99.4	
MB-75275-PNA	83.8	77.0	94.6	96.4	
LCS-75275-PNA	85.0	78.6	93.8	98.6	
LCSD-75275-PNA	91.6	82.2	103	98.2	

	Surrogate	QC Limits
DCBZ12D4	= 1,2-Dichlorobenzene-d4	16-110
NO2BZD5	= Nitrobenzene-d5	35-114
PHEN2F	= 2-Fluorobiphenyl	43-116
PHEND14	= 4-Terphenyl-d14	33-141

^{*} Surrogate recovery outside acceptance limits

PREP BATCH REPORT

Prep Start Date: 3/24/2014 12:22:00

Prep End Date:

Prep Factor Units:

Prep Batch 75275 Prep Code: 3510_PNA Technician: PAA mL/L

Sample ID	Matrix	рН	SampAmt	Sol Added	Sol Recov	Fin Vol	factor	PrepStart	PrepEnd
MB-75275-PNA			1	0	0	1	1.000	3/24/2014	3/24/2014
LCS-75275-PNA			1	0	0	1	1.000	3/24/2014	3/24/2014
LCSD-75275-PNA			1	0	0	1	1.000	3/24/2014	3/24/2014
14030659-001B	Water		1	0	0	1	1.000	3/24/2014	3/24/2014
14030659-002B	Water		1	0	0	1	1.000	3/24/2014	3/24/2014

Work Order:

14030659

ANALYTICAL QC SUMMARY REPORT

20405.012.005.2306.00, BKG, Kankakee, IL **Project:**

BatchID: 75275

Sample ID MB-75275-PNA Client ID: ZZZZZ	SampType: MBLK Batch ID: 75275		de: PNA_WA ' No: SW82700	TER Units: mg/L		Prep Dat Analysis Da	te: 3/24/2		Run ID: SVOC-7_140324A SeqNo: 2631240			
Analyte	Result	PQL		SPK Ref Val	%REC	·	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	ND	0.0010	0		70.120						4 444	
Acenaphthylene	ND	0.0010										
Anthracene	ND ND	0.0010										
Benz(a)anthracene	ND	0.0010										
Benzo(a)pyrene	ND	0.00010										
Benzo(b)fluoranthene	ND	0.00010										
Benzo(g,h,i)perylene	ND	0.00010										
Benzo(k)fluoranthene	ND	0.0010										
Chrysene	ND	0.00010										
Dibenz(a,h)anthracene	ND	0.00010										
Fluoranthene	ND	0.00010										
Fluorene	ND	0.0010										
Indeno(1,2,3-cd)pyrene	ND	0.00010										
Naphthalene	ND	0.0010										
Phenanthrene	ND	0.0010										
Pyrene	ND	0.0010										
Sample ID LCS-75275-PNA	SampType: LCS	TestCo	de: PNA_WA	TER Units: mg/L		Prep Dat	te: 3/24/2	014	Run ID: SV	OC-7_1403	24A	
Client ID: ZZZZZ	Batch ID: 75275	TestN	No: SW8270C	:-SI		Analysis Da	te: 3/24/2	014	SeqNo: 26	31262		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	0.0045	0.0010	0.005	0	90	50	125	0	0			
Acenaphthylene	0.00442	0.0010	0.005	0	88.4	50	125	0	0			
Anthracene	0.00447	0.0010	0.005	0	89.4	50	125	0	0			
Benz(a)anthracene	0.00447	0.00010	0.005	0	89.4	50	125	0	0			
Benzo(a)pyrene	0.00421	0.00010	0.005	0	84.2	50	125	0	0			
2020(4), 57.00	0.00455	0.00010	0.005	0	91	50	125	0	0			
Benzo(b)fluoranthene	0.00100			0	91.6	50	125	0	0			
	0.00458	0.0010	0.005	0	91.0							
Benzo(b)fluoranthene		0.0010 0.00010	0.005 0.005	0	91.2	50	125	0	0			
Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.00458			-			125 125	0 0	0			

Qualifiers:

B - Analyte detected in the associated Method Blank

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

^{* -} Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

Work Order:

14030659

ANALYTICAL QC SUMMARY REPORT

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

BatchID: 75275

Sample ID LCS-75275-PNA	SampType: LCS	TestCode: PNA_WATER Units: mg/L		Prep Date: 3/24/2014				Run ID: SVOC-7_140324A			
Client ID: ZZZZZ	Batch ID: 75275	TestN	lo: SW8270C	:-SI		Analysis Da	te: 3/24/2 0	014	SeqNo: 2631262		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	0.00487	0.0010	0.005	0	97.4	50	125	0	0		
Fluorene	0.00463	0.0010	0.005	0	92.6	50	125	0	0		
Indeno(1,2,3-cd)pyrene	0.00467	0.00010	0.005	0	93.4	50	125	0	0		
Naphthalene	0.00414	0.0010	0.005	0	82.8	50	125	0	0		
Phenanthrene	0.00446	0.0010	0.005	0	89.2	50	125	0	0		
Pyrene	0.00483	0.0010	0.005	0	96.6	50	125	0	0		
Sample ID LCSD-75275-PNA	SampType: LCSD	TestCode: PNA_WATER Units: mg/L				Prep Dat	te: 3/24/2 0	014	Run ID: SVOC-7_140324A		
Client ID: ZZZZZ	Batch ID: 75275	TestN	lo: SW8270C	:-SI	Analysis Date: 3/24/2014				SeqNo: 2631272		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00485	0.0010	0.005	0	97	50	125	0.0045	7.49	25	
Acenaphthylene	0.00482	0.0010	0.005	0	96.4	50	125	0.00442	8.66	25	
Anthracene	0.00457	0.0010	0.005	0	91.4	50	125	0.00447	2.21	25	
Benz(a)anthracene	0.00458	0.00010	0.005	0	91.6	50	125	0.00447	2.43	25	
Benzo(a)pyrene	0.0042	0.00010	0.005	0	84	50	125	0.00421	0.238	25	
Benzo(b)fluoranthene	0.00478	0.00010	0.005	0	95.6	50	125	0.00455	4.93	25	
Benzo(g,h,i)perylene	0.00515	0.0010	0.005	0	103	50	125	0.00458	11.7	25	
Benzo(k)fluoranthene	0.0049	0.00010	0.005	0	98	50	125	0.00456	7.19	25	
Chrysene	0.00502	0.00010	0.005	0	100	50	125	0.00488	2.83	25	
Dibenz(a,h)anthracene	0.00516	0.00010	0.005	0	103	50	125	0.00426	19.1	25	
Fluoranthene	0.00481	0.0010	0.005	0	96.2	50	125	0.00487	1.24	25	
Fluorene	0.0048	0.0010	0.005	0	96	50	125	0.00463	3.61	25	
Indeno(1,2,3-cd)pyrene	0.00521	0.00010	0.005	0	104	50	125	0.00467	10.9	25	
Naphthalene	0.00471	0.0010	0.005	0	94.2	50	125	0.00414	12.9	25	
Phenanthrene	0.00459	0.0010	0.005	0	91.8	50	125	0.00446	2.87	25	
Pyrene	0.00502	0.0010	0.005	0	100	50	125	0.00483	3.86	25	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Non Accredited Parameter

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

H/HT - Holding Time Exceeded

B - Analyte detected in the associated Method Blank

ATTACHMENT E DATA VALIDATION REPORT FOR AIR SAMPLES

BUCKEYE KANKAKEE GASOLINE SPILL KANKAKEE, ILLINOIS DATA VALIDATION REPORT

Date: March 27, 2014

Laboratory: STAT Analysis Corporation (STAT), Chicago, Illinois

Laboratory Project #: 14030659

Data Validation Performed By: Lisa Graczyk, Weston Solutions, Inc. (WESTON) Superfund

Technical Assessment and Response Team (START)

Weston Analytical Work Order #/TDD #: 20405.016.005.2306.77/S05-0005-1403-006

This data validation report has been prepared by WESTON START under the START III Region V contract. This report documents the data validation for three air samples collected for the Buckeye Kankakee Gasoline Spill Site that were analyzed for the following parameters and U.S. Environmental Protection Agency methods:

• Volatile Organic Compounds (VOC) by Method TO-15

A level II data package was requested from STAT. The data validation was conducted in general accordance with the EPA "Contract Laboratory Program National Functional Guidance for Superfund Organic Methods Data Review" dated June 2008. The Attachment contains the results summary sheets with the hand-written qualifiers applied during data validation.

VOCs BY METHOD TO-15

1. Samples

The following table summarizes the samples for which this data validation is being conducted.

			Date	Date
Samples	Lab ID	Matrix	Collected	Analyzed
BKG-Summa-N-032114	14030659-003	Air	3/21/2014	3/21/2014
BKG-Summa-W-032114	14030659-004	Air	3/21/2014	3/21/2014
BKG-Summa-E-032114	14030659-005	Air	3/21/2014	3/21/2014

Data Validation Report Buckeye Kankakee Gasoline Spill Site STAT Analysis Corporation Laboratory Project #: 14030659

2. <u>Holding Times</u>

The samples were analyzed within the required holding time limit of 30 days from sample collection.

3. Blanks

A method blank was analyzed with the VOC analyses and was free of target compound contamination above the reporting limits. Bromomethane was detected below the reporting limits in the method blanks. However, bromomethane was not detected in the samples and no qualifications were required.

4. <u>Laboratory Control Sample (LCS) Results</u>

The LCS and LCS duplicate (LCSD) recoveries and relative percent differences (RPD) were within laboratory QC limits.

5. Overall Assessment

The VOC data are acceptable for use based on the information received.

Data Validation Report Buckeye Kankakee Gasoline Spill Site STAT Analysis Corporation Laboratory Project #: 14030659

ATTACHMENT

STAT ANALYSIS CORPORATION RESULTS SUMMARY

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	Date: 3/21/201	4 Analyst: VP
1,1,1-Trichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	0.35		ppbv	1	3/21/2014
1,1,2-Trichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dibromoethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloropropane	ND	0.35		ppbv	1	3/21/2014
1,3,5-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,3-Butadiene	ND	0.35		ppbv	1	3/21/2014
1,3-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dioxane	ND	0.89		ppbv	1	3/21/2014
2-Butanone	ND	0.89		ppbv	1	3/21/2014
2-Hexanone	ND	1.8		ppbv	1	3/21/2014
4-Ethyltoluene	ND	0.35		ppbv	1	3/21/2014
4-Methyl-2-pentanone	ND	1.8		ppbv	1	3/21/2014
Acetone	ND	3.5	*	ppbv	1	3/21/2014
Benzene	ND	0.35		ppbv	1	3/21/2014
Benzyl chloride	ND	0.89		ppbv	1	3/21/2014
Bromodichloromethane	ND	0.35		ppbv	1	3/21/2014
Bromoform	ND	0.89		ppbv	1	3/21/2014
Bromomethane	ND	0.89		ppbv	1	3/21/2014
Carbon disulfide	ND	0.35		ppbv	1	3/21/2014
Carbon tetrachloride	ND	0.35		ppbv	1	3/21/2014
Chlorobenzene	ND	0.35		ppbv	1	3/21/2014
Chloroethane	ND	0.35		ppbv	1	3/21/2014
Chloroform	ND	0.35		ppbv	1	3/21/2014
Chloromethane	ND	0.89		ppbv	1	3/21/2014
cis-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
cis-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Cyclohexane	ND	0.35		ppbv	1	3/21/2014
Dibromochloromethane	ND	0.35		ppbv	1	3/21/2014
Dichlorodifluoromethane	0.46	0.35		ppbv	1	3/21/2014
Ethyl acetate	ND	0.35		ppbv	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
Ethylbenzene	ND	0.35		ppbv	1	3/21/2014
Freon-113	ND	0.35		ppbv	1	3/21/2014
Freon-114	ND	1.8		ppbv	1	3/21/2014
Heptane	ND	0.35		ppbv	1	3/21/2014
Hexachlorobutadiene	ND	0.35		ppbv	1	3/21/2014
Hexane	ND	0.89		ppbv	1	3/21/2014
Isopropyl Alcohol	ND	1.8		ppbv	1	3/21/2014
m,p-Xylene	ND	0.71		ppbv	1	3/21/2014
Methyl tert-butyl ether	ND	0.35		ppbv	1	3/21/2014
Methylene chloride	ND	3.5		ppbv	1	3/21/2014
o-Xylene	ND	0.35		ppbv	1	3/21/2014
Propene	ND	3.5		ppbv	1	3/21/2014
Styrene	ND	0.35		ppbv	1	3/21/2014
Tetrachloroethene	ND	0.35		ppbv	1	3/21/2014
Tetrahydrofuran	ND	0.89		ppbv	1	3/21/2014
Toluene	0.39	0.35		ppbv	1	3/21/2014
trans-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
trans-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Trichloroethene	ND	0.35		ppbv	1	3/21/2014
Trichlorofluoromethane	ND	0.35		ppbv	1	3/21/2014
Vinyl acetate	ND	3.5		ppbv	1	3/21/2014
Vinyl chloride	ND	0.35		ppbv	1	3/21/2014
Xylenes, Total	ND	1.1		ppbv	1	3/21/2014
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
1,1,1-Trichloroethane	ND	2		μg/m³	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	2.5		µg/m³	1	3/21/2014
1,1,2-Trichloroethane	ND	2		µg/m³	1	3/21/2014
1,1-Dichloroethane	ND	1.4		µg/m³	1	3/21/2014
1,1-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
1,2,4-Trichlorobenzene	ND	2.7		µg/m³	1	3/21/2014
1,2,4-Trimethylbenzene	ND	1.8		μg/m³	1	3/21/2014
1,2-Dibromoethane	ND	2.7		μg/m³	1	3/21/2014
1,2-Dichlorobenzene	ND	2.1		μg/m³	1	3/21/2014
1,2-Dichloroethane	ND	1.4		μg/m³	1	3/21/2014
1,2-Dichloropropane	ND	1.6		μg/m³	1	3/21/2014
1,3,5-Trimethylbenzene	ND	1.8		μg/m³	1	3/21/2014
1,3-Butadiene	ND	0.71		μg/m³	1	3/21/2014
1,3-Dichlorobenzene	ND	2.1		μg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

K - KI D outside accepted recovery mint

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

ANALYTICAL RESULTS

Print Date: March 24, 2014

Client: Weston Solutions Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/20	114 Analyst: VP
1,4-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014
1,4-Dioxane	ND	3.2		μg/m³	1	3/21/2014
2-Butanone	ND	2.7		µg/m³	1	3/21/2014
2-Hexanone	ND	7.3		µg/m³	1	3/21/2014
4-Ethyltoluene	ND	1.8		µg/m³	1	3/21/2014
4-Methyl-2-pentanone	ND	7.3		µg/m³	1	3/21/2014
Acetone	ND	8.5	*	µg/m³	1	3/21/2014
Benzene	ND	1.1		µg/m³	1	3/21/2014
Benzyl chloride	ND	4.6		µg/m³	1	3/21/2014
Bromodichloromethane	ND	2.3		µg/m³	1	3/21/2014
Bromoform	ND	9.2		µg/m³	1	3/21/2014
Bromomethane	ND	3.4		µg/m³	1	3/21/2014
Carbon disulfide	ND	1.1		µg/m³	1	3/21/2014
Carbon tetrachloride	ND	2.3		µg/m³	1	3/21/2014
Chlorobenzene	ND	1.6		µg/m³	1	3/21/2014
Chloroethane	ND	0.89		µg/m³	1	3/21/2014
Chloroform	ND	1.8		µg/m³	1	3/21/2014
Chloromethane	ND	1.8		µg/m³	1	3/21/2014
cis-1,2-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
cis-1,3-Dichloropropene	ND	1.6		µg/m³	1	3/21/2014
Cyclohexane	ND	1.2		µg/m³	1	3/21/2014
Dibromochloromethane	ND	3		µg/m³	1	3/21/2014
Dichlorodifluoromethane	2.3	1.8		µg/m³	1	3/21/2014
Ethyl acetate	ND	1.2		µg/m³	1	3/21/2014
Ethylbenzene	ND	1.6		µg/m³	1	3/21/2014
Freon-113	ND	2.7		µg/m³	1	3/21/2014
Freon-114	ND	12		µg/m³	1	3/21/2014
Heptane	ND	1.4		µg/m³	1	3/21/2014
Hexachlorobutadiene	ND	3.7		µg/m³	1	3/21/2014
Hexane	ND	3.2		µg/m³	1	3/21/2014
Isopropyl Alcohol	ND	4.4		µg/m³	1	3/21/2014
m,p-Xylene	ND	3		µg/m³	1	3/21/2014
Methyl tert-butyl ether	ND	1.2		µg/m³	1	3/21/2014
Methylene chloride	ND	12		µg/m³	1	3/21/2014
o-Xylene	ND	1.6		µg/m³	1	3/21/2014
Propene	ND	6		µg/m³	1	3/21/2014
Styrene	ND	1.6		µg/m³	1	3/21/2014
Tetrachloroethene	ND	2.5		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

K - KI D outside accepted recovery mint

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014 **Print Date:** March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions

Chefit Sample ID: BK

Client Sample ID: BKG-Summa-N-032114

Lab Order: 14030659

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

Collection Date: 3/21/2014

Lab ID: 14030659-003A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/201 4	4 Analyst: VP
Tetrahydrofuran	ND	2.7		µg/m³	1	3/21/2014
Toluene	1.5	1.4		µg/m³	1	3/21/2014
trans-1,2-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
trans-1,3-Dichloropropene	ND	1.6		µg/m³	1	3/21/2014
Trichloroethene	ND	2		µg/m³	1	3/21/2014
Trichlorofluoromethane	ND	2		µg/m³	1	3/21/2014
Vinyl acetate	ND	12		µg/m³	1	3/21/2014
Vinyl chloride	ND	0.89		µg/m³	1	3/21/2014
Xylenes, Total	ND	4.6		μg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions

March 24, 2014

Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-004A **Matrix:** Air

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
1,1,1-Trichloroethane	ND	0.38		ppbv .	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	0.38		ppbv	1	3/21/2014
1,1,2-Trichloroethane	ND	0.38		ppbv	1	3/21/2014
1,1-Dichloroethane	ND	0.38		ppbv	1	3/21/2014
1,1-Dichloroethene	ND	0.38		ppbv	1	3/21/2014
1,2,4-Trichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,2,4-Trimethylbenzene	ND	0.38		ppbv	1	3/21/2014
1,2-Dibromoethane	ND	0.38		ppbv	1	3/21/2014
1,2-Dichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,2-Dichloroethane	ND	0.38		ppbv	1	3/21/2014
1,2-Dichloropropane	ND	0.38		ppbv	1	3/21/2014
1,3,5-Trimethylbenzene	ND	0.38		ppbv	1	3/21/2014
1,3-Butadiene	ND	0.38		ppbv	1	3/21/2014
1,3-Dichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,4-Dichlorobenzene	ND	0.38		ppbv	1	3/21/2014
1,4-Dioxane	ND	0.96		ppbv	1	3/21/2014
2-Butanone	ND	0.96		ppbv	1	3/21/2014
2-Hexanone	ND	1.9		ppbv	1	3/21/2014
4-Ethyltoluene	ND	0.38		ppbv	1	3/21/2014
4-Methyl-2-pentanone	ND	1.9		ppbv	1	3/21/2014
Acetone	ND	3.8	*	ppbv	1	3/21/2014
Benzene	ND	0.38		ppbv	1	3/21/2014
Benzyl chloride	ND	0.96		ppbv	1	3/21/2014
Bromodichloromethane	ND	0.38		ppbv	1	3/21/2014
Bromoform	ND	0.96		ppbv	1	3/21/2014
Bromomethane	ND	0.96		ppbv	1	3/21/2014
Carbon disulfide	ND	0.38		ppbv	1	3/21/2014
Carbon tetrachloride	ND	0.38		ppbv	1	3/21/2014
Chlorobenzene	ND	0.38		ppbv	1	3/21/2014
Chloroethane	ND	0.38		ppbv	1	3/21/2014
Chloroform	ND	0.38		ppbv	1	3/21/2014
Chloromethane	ND	0.96		ppbv	1	3/21/2014
cis-1,2-Dichloroethene	ND	0.38		ppbv	1	3/21/2014
cis-1,3-Dichloropropene	ND	0.38		ppbv	1	3/21/2014
Cyclohexane	ND	0.38		ppbv	1	3/21/2014
Dibromochloromethane	ND	0.38		ppbv	1	3/21/2014
Dichlorodifluoromethane	0.44	0.38		ppbv	1	3/21/2014
Ethyl acetate	ND	0.38		ppbv	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions

March 24, 2014

Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-004A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/201 4	Analyst: VP
Ethylbenzene	ND	0.38		ppbv	1	3/21/2014
Freon-113	ND	0.38		ppbv	1	3/21/2014
Freon-114	ND	1.9		ppbv	1	3/21/2014
Heptane	ND	0.38		ppbv	1	3/21/2014
Hexachlorobutadiene	ND	0.38		ppbv	1	3/21/2014
Hexane	ND	0.96		ppbv	1	3/21/2014
Isopropyl Alcohol	ND	1.9		ppbv	1	3/21/2014
m,p-Xylene	ND	0.76		ppbv	1	3/21/2014
Methyl tert-butyl ether	ND	0.38		ppbv	1	3/21/2014
Methylene chloride	ND	3.8		ppbv	1	3/21/2014
o-Xylene	ND	0.38		ppbv	1	3/21/2014
Propene	ND	3.8		ppbv	1	3/21/2014
Styrene	ND	0.38		ppbv	1	3/21/2014
Tetrachloroethene	ND	0.38		ppbv	1	3/21/2014
Tetrahydrofuran	ND	0.96		ppbv	1	3/21/2014
Toluene	0.38	0.38		ppbv	1	3/21/2014
trans-1,2-Dichloroethene	ND	0.38		ppbv	1	3/21/2014
trans-1,3-Dichloropropene	ND	0.38		ppbv	1	3/21/2014
Trichloroethene	ND	0.38		ppbv	1	3/21/2014
Trichlorofluoromethane	ND	0.38		ppbv	1	3/21/2014
Vinyl acetate	ND	3.8		ppbv	1	3/21/2014
Vinyl chloride	ND	0.38		ppbv	1	3/21/2014
Xylenes, Total	ND	1.1		ppbv	1	3/21/2014
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/201 4	Analyst: VP
1,1,1-Trichloroethane	ND	2.1		μg/m³	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	2.7		μg/m³	1	3/21/2014
1,1,2-Trichloroethane	ND	2.1		μg/m³	1	3/21/2014
1,1-Dichloroethane	ND	1.5		μg/m³	1	3/21/2014
1,1-Dichloroethene	ND	1.5		μg/m³	1	3/21/2014
1,2,4-Trichlorobenzene	ND	2.9		µg/m³	1	3/21/2014
1,2,4-Trimethylbenzene	ND	1.9		µg/m³	1	3/21/2014
1,2-Dibromoethane	ND	2.9		µg/m³	1	3/21/2014
1,2-Dichlorobenzene	ND	2.3		µg/m³	1	3/21/2014
1,2-Dichloroethane	ND	1.5		µg/m³	1	3/21/2014
1,2-Dichloropropane	ND	1.7		μg/m³	1	3/21/2014
1,3,5-Trimethylbenzene	ND	1.9		µg/m³	1	3/21/2014
1,3-Butadiene	ND	0.76		µg/m³	1	3/21/2014
1,3-Dichlorobenzene	ND	2.3		μg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

12 of 45

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

ANALYTICAL RESULTS

Print Date: March 24, 2014

Client: Weston Solutions Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-004A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	p Date: 3/21/2 0	014 Analyst: VP
1,4-Dichlorobenzene	ND	2.3		µg/m³	1	3/21/2014
1,4-Dioxane	ND	3.4		µg/m³	1	3/21/2014
2-Butanone	ND	2.9		μg/m³	1	3/21/2014
2-Hexanone	ND	7.8		µg/m³	1	3/21/2014
4-Ethyltoluene	ND	1.9		µg/m³	1	3/21/2014
4-Methyl-2-pentanone	ND	7.8		µg/m³	1	3/21/2014
Acetone	ND	9.2	*	µg/m³	1	3/21/2014
Benzene	ND	1.1		µg/m³	1	3/21/2014
Benzyl chloride	ND	5		µg/m³	1	3/21/2014
Bromodichloromethane	ND	2.5		µg/m³	1	3/21/2014
Bromoform	ND	9.9		µg/m³	1	3/21/2014
Bromomethane	ND	3.6		µg/m³	1	3/21/2014
Carbon disulfide	ND	1.2		µg/m³	1	3/21/2014
Carbon tetrachloride	ND	2.5		µg/m³	1	3/21/2014
Chlorobenzene	ND	1.7		µg/m³	1	3/21/2014
Chloroethane	ND	0.96		µg/m³	1	3/21/2014
Chloroform	ND	1.9		µg/m³	1	3/21/2014
Chloromethane	ND	1.9		µg/m³	1	3/21/2014
cis-1,2-Dichloroethene	ND	1.5		µg/m³	1	3/21/2014
cis-1,3-Dichloropropene	ND	1.7		µg/m³	1	3/21/2014
Cyclohexane	ND	1.3		µg/m³	1	3/21/2014
Dibromochloromethane	ND	3.2		µg/m³	1	3/21/2014
Dichlorodifluoromethane	2.2	1.9		µg/m³	1	3/21/2014
Ethyl acetate	ND	1.3		µg/m³	1	3/21/2014
Ethylbenzene	ND	1.7		µg/m³	1	3/21/2014
Freon-113	ND	2.9		µg/m³	1	3/21/2014
Freon-114	ND	13		µg/m³	1	3/21/2014
Heptane	ND	1.5		µg/m³	1	3/21/2014
Hexachlorobutadiene	ND	4		µg/m³	1	3/21/2014
Hexane	ND	3.4		μg/m³	1	3/21/2014
Isopropyl Alcohol	ND	4.8		μg/m³	1	3/21/2014
m,p-Xylene	ND	3.2		μg/m³	1	3/21/2014
Methyl tert-butyl ether	ND	1.3		μg/m³	1	3/21/2014
Methylene chloride	ND	13		μg/m³	1	3/21/2014
o-Xylene	ND	1.7		μg/m³	1	3/21/2014
Propene	ND	6.5		µg/m³	1	3/21/2014
Styrene	ND	1.7		µg/m³	1	3/21/2014
Tetrachloroethene	ND	2.7		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions

Client Sample ID: BKG-Summa-W-032114

Lab Order: 14030659

Print Date:

Lab ID:

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

March 24, 2014

Collection Date: 3/21/2014

14030659-004A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	o Date: 3/21/20 1	4 Analyst: VP
Tetrahydrofuran	ND	2.9		µg/m³	1	3/21/2014
Toluene	1.4	1.3		µg/m³	1	3/21/2014
trans-1,2-Dichloroethene	ND	1.5		µg/m³	1	3/21/2014
trans-1,3-Dichloropropene	ND	1.7		µg/m³	1	3/21/2014
Trichloroethene	ND	2.1		µg/m³	1	3/21/2014
Trichlorofluoromethane	ND	2.1		µg/m³	1	3/21/2014
Vinyl acetate	ND	13		µg/m³	1	3/21/2014
Vinyl chloride	ND	0.96		µg/m³	1	3/21/2014
Xylenes, Total	ND	5		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

March 24, 2014

Client: Weston Solutions Client Sample ID: BKG-Summa-E-032114

Lab Order: 14030659 Tag Number:

Collection Date: 3/21/2014 **Project:** 20405.012.005.2306.00, BKG, Kankakee, IL

Lab ID: Matrix: Air 14030659-005A

Analyses	Result	RL Qu	alifier	Units	DF	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/201 4	Analyst: VP
1,1,1-Trichloroethane	ND	0.35		ppbv .	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	0.35		ppbv	1	3/21/2014
1,1,2-Trichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,1-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2,4-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dibromoethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloroethane	ND	0.35		ppbv	1	3/21/2014
1,2-Dichloropropane	ND	0.35		ppbv	1	3/21/2014
1,3,5-Trimethylbenzene	ND	0.35		ppbv	1	3/21/2014
1,3-Butadiene	ND	0.35		ppbv	1	3/21/2014
1,3-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dichlorobenzene	ND	0.35		ppbv	1	3/21/2014
1,4-Dioxane	ND	0.88		ppbv	1	3/21/2014
2-Butanone	ND	0.88		ppbv	1	3/21/2014
2-Hexanone	ND	1.8		ppbv	1	3/21/2014
4-Ethyltoluene	ND	0.35		ppbv	1	3/21/2014
4-Methyl-2-pentanone	ND	1.8		ppbv	1	3/21/2014
Acetone	ND	3.5	*	ppbv	1	3/21/2014
Benzene	ND	0.35		ppbv	1	3/21/2014
Benzyl chloride	ND	0.88		ppbv	1	3/21/2014
Bromodichloromethane	ND	0.35		ppbv	1	3/21/2014
Bromoform	ND	0.88		ppbv	1	3/21/2014
Bromomethane	ND	0.88		ppbv	1	3/21/2014
Carbon disulfide	ND	0.35		ppbv	1	3/21/2014
Carbon tetrachloride	ND	0.35		ppbv	1	3/21/2014
Chlorobenzene	ND	0.35		ppbv	1	3/21/2014
Chloroethane	ND	0.35		ppbv	1	3/21/2014
Chloroform	ND	0.35		ppbv	1	3/21/2014
Chloromethane	ND	0.88		ppbv	1	3/21/2014
cis-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
cis-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Cyclohexane	ND	0.35		ppbv	1	3/21/2014
Dibromochloromethane	ND	0.35		ppbv	1	3/21/2014
Dichlorodifluoromethane	0.44	0.35		ppbv	1	3/21/2014
Ethyl acetate	ND	0.35		ppbv	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

Lab Order:

ANALYTICAL RESULTS

Client: Weston Solutions

Client Sample ID: BKG-Summa-E-032114

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

March 24, 2014

14030659

Matrix: Air

Collection Date: 3/21/2014

Lab ID: 14030659-005A

Analyses	Result	RL	Qualifier	Units	DF I	Date Analyzed
Volatile Organic Compounds in Air by GC/MS	TO-15			Pre	Date: 3/21/2014	Analyst: VP
Ethylbenzene	ND	0.35		ppbv	1	3/21/2014
Freon-113	ND	0.35		ppbv	1	3/21/2014
Freon-114	ND	1.8		ppbv	1	3/21/2014
Heptane	ND	0.35		ppbv	1	3/21/2014
Hexachlorobutadiene	ND	0.35		ppbv	1	3/21/2014
Hexane	ND	0.88		ppbv	1	3/21/2014
Isopropyl Alcohol	ND	1.8		ppbv	1	3/21/2014
m,p-Xylene	ND	0.7		ppbv	1	3/21/2014
Methyl tert-butyl ether	ND	0.35		ppbv	1	3/21/2014
Methylene chloride	ND	3.5		ppbv	1	3/21/2014
o-Xylene	ND	0.35		ppbv	1	3/21/2014
Propene	ND	3.5		ppbv	1	3/21/2014
Styrene	ND	0.35		ppbv	1	3/21/2014
Tetrachloroethene	ND	0.35		ppbv	1	3/21/2014
Tetrahydrofuran	ND	0.88		ppbv	1	3/21/2014
Toluene	0.42	0.35		ppbv	1	3/21/2014
trans-1,2-Dichloroethene	ND	0.35		ppbv	1	3/21/2014
trans-1,3-Dichloropropene	ND	0.35		ppbv	1	3/21/2014
Trichloroethene	ND	0.35		ppbv	1	3/21/2014
Trichlorofluoromethane	ND	0.35		ppbv	1	3/21/2014
Vinyl acetate	ND	3.5		ppbv	1	3/21/2014
Vinyl chloride	ND	0.35		ppbv	1	3/21/2014
Xylenes, Total	ND	1.1		ppbv	1	3/21/2014
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep	Date: 3/21/2014	Analyst: VP
1,1,1-Trichloroethane	ND	1.9		µg/m³	1	3/21/2014
1,1,2,2-Tetrachloroethane	ND	2.5		µg/m³	1	3/21/2014
1,1,2-Trichloroethane	ND	1.9		µg/m³	1	3/21/2014
1,1-Dichloroethane	ND	1.4		µg/m³	1	3/21/2014
1,1-Dichloroethene	ND	1.4		µg/m³	1	3/21/2014
1,2,4-Trichlorobenzene	ND	2.6		µg/m³	1	3/21/2014
1,2,4-Trimethylbenzene	ND	1.8		µg/m³	1	3/21/2014
1,2-Dibromoethane	ND	2.6		µg/m³	1	3/21/2014
1,2-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014
1,2-Dichloroethane	ND	1.4		µg/m³	1	3/21/2014
1,2-Dichloropropane	ND	1.6		µg/m³	1	3/21/2014
1,3,5-Trimethylbenzene	ND	1.8		µg/m³	1	3/21/2014
1,3-Butadiene	ND	0.7		µg/m³	1	3/21/2014
1,3-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

March 24, 2014

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014

Print Date:

ANALYTICAL RESULTS

Client: Weston Solutions Client Sample ID: BKG-Summa-E-032114

Lab Order: 14030659 Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL **Collection Date:** 3/21/2014

Lab ID: 14030659-005A **Matrix:** Air

Analyses	Result TO-15	RL	Qualifier	Units	DF	Date Analyzed	
Volatile Organic Compounds in Air by GC/MS				Prep Date: 3/21/201		14 Analyst: VP	
1,4-Dichlorobenzene	ND	2.1		µg/m³	1	3/21/2014	
1,4-Dioxane	ND	3.2		µg/m³	1	3/21/2014	
2-Butanone	ND	2.6		µg/m³	1	3/21/2014	
2-Hexanone	ND	7.2		µg/m³	1	3/21/2014	
4-Ethyltoluene	ND	1.8		μg/m³	1	3/21/2014	
4-Methyl-2-pentanone	ND	7.2		µg/m³	1	3/21/2014	
Acetone	ND	8.5	*	µg/m³	1	3/21/2014	
Benzene	ND	1.1		µg/m³	1	3/21/2014	
Benzyl chloride	ND	4.6		µg/m³	1	3/21/2014	
Bromodichloromethane	ND	2.3		µg/m³	1	3/21/2014	
Bromoform	ND	9.2		μg/m³	1	3/21/2014	
Bromomethane	ND	3.3		μg/m³	1	3/21/2014	
Carbon disulfide	ND	1.1		μg/m³	1	3/21/2014	
Carbon tetrachloride	ND	2.3		μg/m³	1	3/21/2014	
Chlorobenzene	ND	1.6		μg/m³	1	3/21/2014	
Chloroethane	ND	0.88		μg/m³	1	3/21/2014	
Chloroform	ND	1.8		μg/m³	1	3/21/2014	
Chloromethane	ND	1.8		μg/m³	1	3/21/2014	
cis-1,2-Dichloroethene	ND	1.4		μg/m³	1	3/21/2014	
cis-1,3-Dichloropropene	ND	1.6		μg/m³	1	3/21/2014	
Cyclohexane	ND	1.2		μg/m³	1	3/21/2014	
Dibromochloromethane	ND	3		μg/m³	1	3/21/2014	
Dichlorodifluoromethane	2.2	1.8		μg/m³	1	3/21/2014	
Ethyl acetate	ND	1.2		μg/m³	1	3/21/2014	
Ethylbenzene	ND	1.6		μg/m³	1	3/21/2014	
Freon-113	ND	2.6		μg/m³	1	3/21/2014	
Freon-114	ND	12		μg/m³	1	3/21/2014	
Heptane	ND	1.4		µg/m³	1	3/21/2014	
Hexachlorobutadiene	ND	3.7		µg/m³	1	3/21/2014	
Hexane	ND	3.2		µg/m³	1	3/21/2014	
Isopropyl Alcohol	ND	4.4		µg/m³	1	3/21/2014	
m,p-Xylene	ND	3		µg/m³	1	3/21/2014	
Methyl tert-butyl ether	ND	1.2		µg/m³	1	3/21/2014	
Methylene chloride	ND	12		µg/m³	1	3/21/2014	
o-Xylene	ND	1.6		µg/m³	1	3/21/2014	
Propene	ND	6		µg/m³	1	3/21/2014	
Styrene	ND	1.6		µg/m³	1	3/21/2014	
Tetrachloroethene	ND	2.5		µg/m³	1	3/21/2014	

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers:IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Report Date: March 24, 2014 **Print Date:** March 24, 2014

ANALYTICAL RESULTS

Client: Weston Solutions

Client Sample ID: BKG-Summa-E-032114

Lab Order: 14030659

Tag Number:

Project: 20405.012.005.2306.00, BKG, Kankakee, IL

Collection Date: 3/21/2014

Lab ID: 14030659-005A **Matrix:** Air

Analyses	Result	RL	Qualifier	Units DF		Г	Date Analyzed	
Volatile Organic Compounds in Air by GC/MS	TO-15			Prep Date: 3/21/2014			Analyst: VP	
Tetrahydrofuran	ND	2.6		µg/m³	1		3/21/2014	
Toluene	1.6	1.4		µg/m³	1		3/21/2014	
trans-1,2-Dichloroethene	ND	1.4		µg/m³	1		3/21/2014	
trans-1,3-Dichloropropene	ND	1.6		µg/m³	1		3/21/2014	
Trichloroethene	ND	1.9		µg/m³	1		3/21/2014	
Trichlorofluoromethane	ND	1.9		µg/m³	1		3/21/2014	
Vinyl acetate	ND	12		µg/m³	1		3/21/2014	
Vinyl chloride	ND	0.88		μg/m³	1		3/21/2014	
Xylenes, Total	ND	4.6		µg/m³	1		3/21/2014	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range